-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathlab-04-3-file_input_linear_regression.py
102 lines (87 loc) · 2.2 KB
/
lab-04-3-file_input_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Lab 4 Multi-variable linear regression
import tensorflow as tf
import numpy as np
tf.set_random_seed(777) # for reproducibility
xy = np.loadtxt('data-01-test-score.csv', delimiter=',', dtype=np.float32)
x_data = xy[:, 0:-1]
y_data = xy[:, [-1]]
# Make sure the shape and data are OK
print(x_data, "\nx_data shape:", x_data.shape)
print(y_data, "\ny_data shape:", y_data.shape)
# data output
'''
[[ 73. 80. 75.]
[ 93. 88. 93.]
...
[ 76. 83. 71.]
[ 96. 93. 95.]]
x_data shape: (25, 3)
[[152.]
[185.]
...
[149.]
[192.]]
y_data shape: (25, 1)
'''
# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 3])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([3, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
# Hypothesis
hypothesis = tf.matmul(X, W) + b
# Simplified cost/loss function
cost = tf.reduce_mean(tf.square(hypothesis - Y))
# Minimize
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-5)
train = optimizer.minimize(cost)
# Launch the graph in a session.
sess = tf.Session()
# Initializes global variables in the graph.
sess.run(tf.global_variables_initializer())
for step in range(2001):
cost_val, hy_val, _ = sess.run([cost, hypothesis, train],
feed_dict={X: x_data, Y: y_data})
if step % 10 == 0:
print(step, "Cost:", cost_val, "\nPrediction:\n", hy_val)
# train output
'''
0 Cost: 21027.0
Prediction:
[[22.048063 ]
[21.619772 ]
...
[31.36112 ]
[24.986364 ]]
10 Cost: 95.976326
Prediction:
[[157.11063 ]
[183.99283 ]
...
[167.48862 ]
[193.25117 ]]
1990 Cost: 24.863274
Prediction:
[[154.4393 ]
[185.5584 ]
...
[158.27443 ]
[192.79778 ]]
2000 Cost: 24.722485
Prediction:
[[154.42894 ]
[185.5586 ]
...
[158.24257 ]
[192.79166 ]]
'''
# Ask my score
print("Your score will be ", sess.run(hypothesis,
feed_dict={X: [[100, 70, 101]]}))
print("Other scores will be ", sess.run(hypothesis,
feed_dict={X: [[60, 70, 110], [90, 100, 80]]}))
'''
Your score will be [[ 181.73277283]]
Other scores will be [[ 145.86265564]
[ 187.23129272]]
'''