-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathrun.py
executable file
·50 lines (43 loc) · 1.28 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/python
# -*- coding: utf-8 -*-
'''
Run ANNA-PALM training or testing on simulated PALM data
run "python3 run.py --help" to see all the arguments.
Specify options according to the help text, data will be downloaded automatically.
For example:
python3 run.py --workdir=./results/simulated_model
'''
import os
import sys
import tensorflow as tf
from AnetLib.options.train_options import Options
from AnetLib.models.models import create_model
from smlm_datasets import create_data_sources
default_workdir = './workdir'
opt = Options().parse()
opt.model = 'a_net_tensorflow'
opt.fineSize = 512
opt.batchSize = 1
opt.dim_ordering = 'channels_last'
opt.display_freq = 500
opt.use_resize_conv = True
opt.norm_A = 'mean_std'
opt.norm_B = 'min_max[0,1]'
opt.lambda_A = 50
opt.input_nc = 2
opt.lr_nc = 1
opt.lr_scale = 1.0/4.0
opt.lambda_LR = 0
opt.control_nc = 1
opt.add_data_type_control = True
opt.add_lr_channel = 'pseudo'
if opt.phase == 'train':
sources = create_data_sources(['TransformedTubulin001NB'], opt)
d = sources['train']
model = create_model(opt)
model.train(d, verbose=1, max_steps=200000)
if opt.phase == 'test':
model = create_model(opt)
sources = create_data_sources(['TransformedTubulin001NB'], opt)
d = sources['test']
model.predict(d, verbose=1)