-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharray.cpp
715 lines (619 loc) · 24.3 KB
/
array.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
#include "array.h"
#include <map>
#include <immintrin.h>
// #include <omp.h>
#include <mkl.h>
Slice::Slice(int start, int stop) : start(start), stop(stop), direct(false) {}
Slice::Slice(int idx) : start(idx), stop(idx + 1), direct(true) {}
Array::Array() {}
Array::Array(
const std::vector<float>& data,
const std::vector<int>& shape
) : data(data), shape(shape) {
calculate_strides(shape, strides);
}
Array::Array(
std::shared_ptr<Array> parent,
int offset,
const std::vector<int>& shape,
const std::vector<int>& strides
) : data(std::vector<float>(parent->data.begin() + offset, parent->data.end())),
shape(shape),
strides(strides) {}
int Array::nelement() {
return std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
}
std::shared_ptr<Array> Array::view(const std::vector<int>& desired_shape) {
auto view_shape = desired_shape;
bool filled = false;
for (int i = 0; i < view_shape.size(); ++i) {
if (view_shape[i] == -1) {
if (filled) {
throw std::invalid_argument("Only one dimension can be inferred.");
}
int inferred = nelement();
for (int j = 0; j < view_shape.size(); ++j) {
if (j != i) {
inferred /= view_shape[j];
}
}
view_shape[i] = inferred;
filled = true;
}
}
if (std::accumulate(view_shape.begin(), view_shape.end(), 1, std::multiplies<int>()) != nelement()) {
throw std::invalid_argument("Shape must have the same number of elements as the original array.");
}
std::vector<int> view_strides(view_shape.size());
int stride = strides[strides.size() - 1];
for (int i = view_shape.size() - 1; i >= 0; --i) {
view_strides[i] = stride;
stride *= view_shape[i];
}
return std::make_shared<Array>(shared_from_this(), 0, view_shape, view_strides);
}
std::shared_ptr<Array> Array::operator[](int index) {
int offset = index * strides[0];
if (shape.size() == 1) {
std::vector<float> scalarData = {data[offset]};
std::vector<int> scalarShape = {1};
return std::make_shared<Array>(scalarData, scalarShape);
} else {
std::vector<int> newShape(shape.begin() + 1, shape.end());
std::vector<int> newStrides(strides.begin() + 1, strides.end());
return std::make_shared<Array>(shared_from_this(), offset, newShape, newStrides);
}
}
std::shared_ptr<Array> Array::slice(const std::vector<Slice>& slices) {
if (slices.size() > shape.size()) {
throw std::invalid_argument("More slices provided than tensor dimensions.");
}
std::vector<int> newShape, newStrides;
int offset = 0;
for (size_t i = 0; i < shape.size(); ++i) {
Slice currentSlice = i < slices.size() ? slices[i] : Slice(0, shape[i]);
if (currentSlice.direct) {
offset += currentSlice.start * strides[i];
continue;
}
if (currentSlice.stop == -1) {
currentSlice.stop = shape[i];
}
newShape.push_back(currentSlice.stop - currentSlice.start);
newStrides.push_back(strides[i]);
offset += currentSlice.start * strides[i];
}
return std::make_shared<Array>(shared_from_this(), offset, newShape, newStrides);
}
std::shared_ptr<Array> Array::index(const std::vector<std::shared_ptr<Array>>& indices) {
if (indices.empty()) {
throw std::invalid_argument("Index list must not be empty.");
}
if (indices.size() > shape.size()) {
throw std::invalid_argument("Index list size must be at most the number of dimensions.");
}
for (auto& index : indices) {
if (index->shape != indices[0]->shape) {
throw std::invalid_argument("All indices must have the same size.");
}
}
// result_shape = [...indices[*]->shape, ...shape[indices.size():]]
std::vector<int> result_shape(indices[0]->shape);
for (size_t i = indices.size(); i < shape.size(); ++i) {
result_shape.push_back(shape[i]);
}
// Iterate over all indices and insert a copy of the sub-data at each location
std::vector<float> result_data;
int index_elements = std::accumulate(indices[0]->shape.begin(), indices[0]->shape.end(), 1, std::multiplies<int>());
int lookup_elements = std::accumulate(shape.begin() + indices.size(), shape.end(), 1, std::multiplies<int>());
for (int i = 0; i < index_elements; i += 1) {
size_t this_data_index = 0;
for (size_t indices_index = 0; indices_index < indices.size(); ++indices_index) {
auto index = indices[indices_index];
size_t index_data_index = 0;
size_t remainder = i;
for (size_t dim = 0; dim < index->shape.size(); ++dim) {
size_t dim_index = remainder / std::accumulate(index->shape.begin() + dim + 1, index->shape.end(), 1, std::multiplies<int>());
remainder %= std::accumulate(index->shape.begin() + dim + 1, index->shape.end(), 1, std::multiplies<int>());
index_data_index += dim_index * index->strides[dim];
}
this_data_index += index->data[index_data_index] * strides[indices_index];
}
for (int j = 0; j < lookup_elements; j += 1) {
size_t this_data_offset = 0;
size_t remainder = j;
for (size_t dim = indices.size(); dim < shape.size(); ++dim) {
size_t dim_index = remainder / strides[dim];
remainder %= strides[dim];
this_data_offset += dim_index * strides[dim];
}
result_data.push_back(data[this_data_index + this_data_offset]);
}
}
return array_from_vector(result_data, result_shape);
}
void calculate_strides(const std::vector<int>& shape, std::vector<int>& strides) {
strides.resize(shape.size());
int stride = 1;
for (int i = shape.size() - 1; i >= 0; --i) {
strides[i] = stride;
stride *= shape[i];
}
}
void Array::print(const std::string& indent) {
if (shape.size() == 1) {
// Base case: 1D tensor
std::cout << "[";
for (int i = 0; i < shape[0]; ++i) {
std::cout << data[i * strides[0]];
if (i < shape[0] - 1) std::cout << ", ";
}
std::cout << "]";
} else {
// Recursive case: N-D tensor
std::cout << "[\n";
int subTensorSize = shape[0];
for (int i = 0; i < subTensorSize; ++i) {
std::cout << indent << " ";
auto subTensor = (*this)[i];
subTensor->print(indent + " ");
if (i < subTensorSize - 1) std::cout << ",\n";
}
std::cout << "\n"
<< indent << "]";
}
if (indent.length() == 0) {
std::cout << "\n";
}
}
void Array::print_shape() {
std::cout << "(";
for (int i = 0; i < shape.size(); ++i) {
std::cout << shape[i];
if (i < shape.size() - 1) {
std::cout << ", ";
}
}
std::cout << ")\n";
}
std::shared_ptr<Array> array_arange(float start, float stop, float step) {
std::vector<float> data;
for (float i = start; i < stop; i += step) {
data.push_back(i);
}
return array_from_vector(data, {static_cast<int>(data.size())});
}
std::shared_ptr<Array> array_from_vector(const std::vector<float>& data, const std::vector<int>& shape) {
return std::make_shared<Array>(data, shape);
}
std::shared_ptr<Array> map_function(const std::shared_ptr<Array>& a, std::function<float(const std::vector<int>&,float)> op) {
auto a_shape = a->shape;
auto a_data = a->data;
auto a_strides = a->strides;
size_t nelement = a->nelement();
std::vector<int> index(a_shape.size(), 0);
// Precompute the products of dimensions for each dimension
std::vector<size_t> dim_products(a_shape.size());
for (size_t dim = 0; dim < a_shape.size(); ++dim) {
dim_products[dim] = std::accumulate(a_shape.begin() + dim + 1, a_shape.end(), 1, std::multiplies<int>());
}
std::vector<float> result(nelement);
for (size_t i = 0; i < nelement; ++i) {
size_t a_index = 0;
size_t remainder = i;
for (size_t dim = 0; dim < a_shape.size(); ++dim) {
size_t a_stride = a_strides[dim];
index[dim] = remainder / dim_products[dim];
remainder %= dim_products[dim];
a_index += index[dim] * a_stride;
}
result[i] = op(index, a_data[a_index]);
}
return std::make_shared<Array>(result, a_shape);
}
std::shared_ptr<Array> tanh(const std::shared_ptr<Array>& a) {
return map_function(a, [](const std::vector<int>&, float x) { return std::tanh(x); });
}
std::shared_ptr<Array> exp(const std::shared_ptr<Array>& a) {
return map_function(a, [](const std::vector<int>&, float x) { return std::exp(x); });
}
std::shared_ptr<Array> log(const std::shared_ptr<Array>& a) {
return map_function(a, [](const std::vector<int>&, float x) { return std::log(x); });
}
std::shared_ptr<Array> pow(const std::shared_ptr<Array>& a, float b) {
return map_function(a, [b](const std::vector<int>&, float x) { return std::pow(x, b); });
}
std::shared_ptr<Array> sqrt(const std::shared_ptr<Array>& a) {
return map_function(a, [](const std::vector<int>&, float x) { return std::sqrt(x); });
}
std::shared_ptr<Array> broadcast_op(const std::shared_ptr<Array>& a, const std::shared_ptr<Array>& b, bool assign, std::function<float(float, float)> op) {
// Determine the result shape
size_t maxDims = std::max(a->shape.size(), b->shape.size());
std::vector<int> out_shape(maxDims);
for (auto& val : out_shape) {
val = 1;
}
for (size_t i = 0; i < maxDims; ++i) {
int a_dim = i < a->shape.size() ? a->shape[a->shape.size() - 1 - i] : 1;
int b_dim = i < b->shape.size() ? b->shape[b->shape.size() - 1 - i] : 1;
if (a_dim != b_dim && a_dim != 1 && b_dim != 1) {
throw std::invalid_argument("Shapes are not broadcast compatible.");
}
out_shape[maxDims - 1 - i] = std::max(a_dim, b_dim);
}
std::vector<int> out_strides;
calculate_strides(out_shape, out_strides);
// Calculate the total number of elements based on the result shape
std::vector<float> out_data;
size_t totalElements = std::accumulate(out_shape.begin(), out_shape.end(), 1, std::multiplies<int>());
if (!assign) {
out_data.resize(totalElements);
}
// Adjust strides for broadcasting
std::vector<int> a_broadcast_strides(maxDims, 0), b_broadcast_strides(maxDims, 0);
for (int i = 0; i < maxDims; ++i) {
if (i < a->shape.size() && a->shape[a->shape.size() - 1 - i] == out_shape[maxDims - 1 - i]) {
a_broadcast_strides[maxDims - 1 - i] = a->strides[a->shape.size() - 1 - i];
}
if (i < b->shape.size() && b->shape[b->shape.size() - 1 - i] == out_shape[maxDims - 1 - i]) {
b_broadcast_strides[maxDims - 1 - i] = b->strides[b->shape.size() - 1 - i];
}
}
for (size_t i = 0; i < totalElements; ++i) {
size_t indexA = 0, indexB = 0, remainder = i;
for (size_t dim = 0; dim < maxDims; ++dim) {
size_t dimIndex = remainder / out_strides[dim];
remainder %= out_strides[dim];
indexA += dimIndex * a_broadcast_strides[dim];
indexB += dimIndex * b_broadcast_strides[dim];
}
if (assign) {
a->data[indexA] = op(a->data[indexA], b->data[indexB]);
} else {
out_data[i] = op(a->data[indexA], b->data[indexB]);
}
}
if (assign) {
return a;
}
return std::make_shared<Array>(out_data, out_shape);
}
std::shared_ptr<Array> operator*(const std::shared_ptr<Array>& a, const std::shared_ptr<Array>& b) {
return broadcast_op(a, b, false, std::multiplies<float>());
}
std::shared_ptr<Array> operator*(const std::shared_ptr<Array>& a, float b) {
return a * array_from_vector({b}, {1});
}
std::shared_ptr<Array> operator*(float a, const std::shared_ptr<Array>& b) {
return array_from_vector({a}, {1}) * b;
}
std::shared_ptr<Array> operator/(const std::shared_ptr<Array>& a, const std::shared_ptr<Array>& b) {
return a * pow(b, -1.0f);
}
std::shared_ptr<Array> operator/(const std::shared_ptr<Array>& a, float b) {
return a * std::pow(b, -1.0f);
}
std::shared_ptr<Array> operator/(float a, const std::shared_ptr<Array>& b) {
return a * pow(b, -1.0f);
}
std::shared_ptr<Array> operator+(const std::shared_ptr<Array>& a, const std::shared_ptr<Array>& b) {
return broadcast_op(a, b, false, std::plus<float>());
}
std::shared_ptr<Array> operator+(const std::shared_ptr<Array>& a, float b) {
return a + array_from_vector({b}, {1});
}
std::shared_ptr<Array> operator+(float a, const std::shared_ptr<Array>& b) {
return array_from_vector({a}, {1}) + b;
}
std::shared_ptr<Array> operator-(const std::shared_ptr<Array>& a) {
return (-1.0f) * a;
}
std::shared_ptr<Array> operator-(const std::shared_ptr<Array>& a, const std::shared_ptr<Array>& b) {
return a + (-b);
}
std::shared_ptr<Array> operator-(const std::shared_ptr<Array>& a, float b) {
return a + (-b);
}
std::shared_ptr<Array> operator-(float a, const std::shared_ptr<Array>& b) {
return a + (-b);
}
std::shared_ptr<Array> one_hot(const std::shared_ptr<Array>& x, int num_classes) {
if (num_classes == -1) {
int nelement = x->nelement();
int maximum = 0;
for (int i = 0; i < nelement; i += 1) {
size_t remainder = i;
std::vector<int> inputIndices(x->shape.size(), 0);
for (size_t dim = 0; dim < x->shape.size(); ++dim) {
inputIndices[dim] = remainder % x->shape[dim];
remainder /= x->shape[dim];
}
size_t inputFlatIndex = 0;
for (size_t dim = 0; dim < inputIndices.size(); ++dim) {
inputFlatIndex += inputIndices[dim] * x->strides[dim];
}
maximum = std::max(maximum, static_cast<int>(x->data[inputFlatIndex]));
}
num_classes = maximum + 1;
}
auto shape = x->shape;
shape.push_back(num_classes);
auto result_data = std::vector<float>(std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()), 0.0f);
int nelement = x->nelement();
for (int i = 0; i < nelement; i += 1) {
int value = static_cast<int>(x->data[i]);
if (value > num_classes - 1) {
throw std::runtime_error("Maximum value in x exceeds num_classes - 1");
}
result_data[i * num_classes + value] = 1;
}
return std::make_shared<Array>(result_data, shape);
}
std::shared_ptr<Array> sum(const std::shared_ptr<Array>& a, const std::vector<int>& d) {
std::vector<int> dims;
if (d.size() == 0) {
for (int i = 0; i < a->shape.size(); ++i) {
dims.push_back(i);
}
} else {
dims = d;
}
std::vector<int> resultShape = a->shape;
for (int dim : dims) {
if (dim < resultShape.size()) {
resultShape[dim] = 1;
}
}
size_t totalResultElements = std::accumulate(resultShape.begin(), resultShape.end(), 1, std::multiplies<size_t>());
std::vector<float> resultData(totalResultElements, 0.0f);
std::vector<int> resultStrides(a->shape.size(), 0);
int stride = 1;
for (int i = resultShape.size() - 1; i >= 0; --i) {
resultStrides[i] = stride;
stride *= resultShape[i];
}
for (size_t linearIndex = 0; linearIndex < a->data.size(); ++linearIndex) {
size_t remainder = linearIndex;
std::vector<int> inputIndices(a->shape.size(), 0);
for (size_t dim = 0; dim < a->shape.size(); ++dim) {
inputIndices[dim] = remainder % a->shape[dim];
remainder /= a->shape[dim];
}
size_t inputFlatIndex = 0;
for (size_t dim = 0; dim < inputIndices.size(); ++dim) {
inputFlatIndex += inputIndices[dim] * a->strides[dim];
}
std::vector<int> outputIndices = inputIndices;
for (int dim : dims) {
outputIndices[dim] = 0; // Set dimensions being summed over to 0
}
size_t resultFlatIndex = 0;
for (size_t dim = 0; dim < outputIndices.size(); ++dim) {
resultFlatIndex += outputIndices[dim] * resultStrides[dim];
}
resultData[resultFlatIndex] += a->data[inputFlatIndex];
}
return array_from_vector(resultData, resultShape);
}
std::shared_ptr<Array> max(const std::shared_ptr<Array>& a, const std::vector<int>& d) {
std::vector<int> dims;
if (d.size() == 0) {
for (int i = 0; i < a->shape.size(); ++i) {
dims.push_back(i);
}
} else {
dims = d;
}
std::vector<int> resultShape = a->shape;
for (int dim : dims) {
if (dim < resultShape.size()) {
resultShape[dim] = 1;
}
}
size_t totalResultElements = std::accumulate(resultShape.begin(), resultShape.end(), 1, std::multiplies<size_t>());
std::vector<float> resultData(totalResultElements, std::numeric_limits<float>::lowest());
std::vector<int> resultStrides(a->shape.size(), 0);
int stride = 1;
for (int i = resultShape.size() - 1; i >= 0; --i) {
resultStrides[i] = stride;
stride *= resultShape[i];
}
for (size_t linearIndex = 0; linearIndex < a->data.size(); ++linearIndex) {
size_t remainder = linearIndex;
std::vector<int> inputIndices(a->shape.size(), 0);
for (size_t dim = 0; dim < a->shape.size(); ++dim) {
inputIndices[dim] = remainder % a->shape[dim];
remainder /= a->shape[dim];
}
size_t inputFlatIndex = 0;
for (size_t dim = 0; dim < inputIndices.size(); ++dim) {
inputFlatIndex += inputIndices[dim] * a->strides[dim];
}
std::vector<int> outputIndices = inputIndices;
for (int dim : dims) {
outputIndices[dim] = 0; // Set dimensions being summed over to 0
}
size_t resultFlatIndex = 0;
for (size_t dim = 0; dim < outputIndices.size(); ++dim) {
resultFlatIndex += outputIndices[dim] * resultStrides[dim];
}
resultData[resultFlatIndex] = std::max(resultData[resultFlatIndex], a->data[inputFlatIndex]);
}
return array_from_vector(resultData, resultShape);
}
std::shared_ptr<Array> mean(const std::shared_ptr<Array>& a, const std::vector<int>& dims) {
float n = a->nelement();
if (!dims.empty()) {
n = 1.0f;
for (int i = 0; i < dims.size(); ++i) {
n *= a->shape[dims[i]];
}
}
return sum(a, dims) / n;
}
std::shared_ptr<Array> variance(const std::shared_ptr<Array>& a, const std::vector<int>& dims) {
float n = a->nelement();
if (!dims.empty()) {
n = 1.0f;
for (int i = 0; i < dims.size(); ++i) {
n *= a->shape[dims[i]];
}
}
return sum(pow(a - mean(a, dims), 2.0f), dims) / (n - 1.0f);
}
std::shared_ptr<Array> variance_biased(const std::shared_ptr<Array>& a, const std::vector<int>& dims) {
float n = a->nelement();
if (!dims.empty()) {
n = 1.0f;
for (int i = 0; i < dims.size(); ++i) {
n *= a->shape[dims[i]];
}
}
return sum(pow(a - mean(a, dims), 2.0f), dims) / n;
}
// std::shared_ptr<Array> multiply_transpose(const std::shared_ptr<Array>& a, bool a_transpose, const std::shared_ptr<Array>& b, bool b_transpose) {
// if (a->shape.size() != 2 || b->shape.size() != 2) {
// throw std::invalid_argument("Matrix multiplication requires two 2D tensors.");
// }
// if (a->shape[a_transpose ? 0 : 1] != b->shape[b_transpose ? 1 : 0]) {
// throw std::invalid_argument("Tensor shapes are not compatible for matrix multiplication.");
// }
// std::vector<float> result;
// int m = a->shape[a_transpose ? 1 : 0];
// int n = a->shape[a_transpose ? 0 : 1];
// int p = b->shape[b_transpose ? 0 : 1];
// int a_stride0 = a->strides[a_transpose ? 1 : 0], a_stride1 = a->strides[a_transpose ? 0 : 1];
// int b_stride0 = b->strides[b_transpose ? 1 : 0], b_stride1 = b->strides[b_transpose ? 0 : 1];
// auto a_data = a->data;
// auto b_data = b->data;
// result.resize(m * p);
// // for (int i = 0; i < m; ++i) {
// // for (int j = 0; j < p; ++j) {
// // float dotProduct = 0;
// // for (int k = 0; k < n; ++k) {
// // float a_val = a_data[i * a_stride0 + k * a_stride1];
// // float b_val = b_data[k * b_stride0 + j * b_stride1];
// // dotProduct += a_val * b_val;
// // }
// // result[i * p + j] = dotProduct;
// // }
// // }
// // #pragma omp parallel for collapse(2) num_threads(2)
// for (int i = 0; i < m; ++i) {
// for (int j = 0; j < p; ++j) {
// float dotProduct = 0;
// int k = 0;
// int ia = i * a_stride0;
// int jb = j * b_stride1;
// __m256 sum = _mm256_setzero_ps(); // Initialize sum vector to 0
// // Use SIMD for the bulk of the operations
// for (; k <= n - 8; k += 8) {
// // Load elements one by one due to non-contiguous memory
// __m256 a_vec = _mm256_set_ps(
// a_data[ia + (k+7) * a_stride1],
// a_data[ia + (k+6) * a_stride1],
// a_data[ia + (k+5) * a_stride1],
// a_data[ia + (k+4) * a_stride1],
// a_data[ia + (k+3) * a_stride1],
// a_data[ia + (k+2) * a_stride1],
// a_data[ia + (k+1) * a_stride1],
// a_data[ia + k * a_stride1]
// );
// __m256 b_vec = _mm256_set_ps(
// b_data[(k+7) * b_stride0 + jb],
// b_data[(k+6) * b_stride0 + jb],
// b_data[(k+5) * b_stride0 + jb],
// b_data[(k+4) * b_stride0 + jb],
// b_data[(k+3) * b_stride0 + jb],
// b_data[(k+2) * b_stride0 + jb],
// b_data[(k+1) * b_stride0 + jb],
// b_data[k * b_stride0 + jb]
// );
// // __m256 a_vec = _mm256_loadu_ps(&a_data[i * a_stride0 + k * a_stride1]);
// // __m256 b_vec = _mm256_loadu_ps(&b_data[k * b_stride0 + j * b_stride1]);
// __m256 prod = _mm256_mul_ps(a_vec, b_vec);
// sum = _mm256_add_ps(sum, prod);
// }
// // Reduce the sum vector and add to dotProduct
// float temp[8];
// _mm256_storeu_ps(temp, sum);
// for (int x = 0; x < 8; ++x) dotProduct += temp[x];
// // Handle any remaining elements
// for (; k < n; ++k) {
// float a_val = a_data[i * a_stride0 + k * a_stride1];
// float b_val = b_data[k * b_stride0 + j * b_stride1];
// dotProduct += a_val * b_val;
// }
// result[i * p + j] = dotProduct;
// }
// }
// return array_from_vector(result, {m, p});
// }
std::shared_ptr<Array> multiply_transpose_higher_dim(const std::shared_ptr<Array>& a, bool a_transpose, const std::shared_ptr<Array>& b, bool b_transpose) {
if (a->shape.size() < 2 || b->shape.size() < 2) {
throw std::invalid_argument("Matrix multiplication requires two tensors with dimension at least 2.");
}
int k = a->shape[a_transpose ? 0 : a->shape.size() - 1];
if (k != b->shape[b_transpose ? b->shape.size() - 1 : 0]) {
throw std::invalid_argument("Tensor shapes are not compatible for matrix multiplication.");
}
int m = a->nelement() / k;
int n = b->nelement() / k;
std::shared_ptr<Array> a_reshaped = a_transpose ? a->view({k, m}) : a->view({m, k});
std::shared_ptr<Array> b_reshaped = b_transpose ? b->view({n, k}) : b->view({k, n});
auto result_reshaped = multiply_transpose(a_reshaped, a_transpose, b_reshaped, b_transpose);
auto result_shape_a = std::vector<int>(a->shape.begin() + (a_transpose ? 1 : 0), a->shape.end() - (a_transpose ? 0 : 1));
if (a_transpose) {
std::reverse(result_shape_a.begin(), result_shape_a.end());
}
auto result_shape_b = std::vector<int>(b->shape.begin() + (b_transpose ? 0 : 1), b->shape.end() - (b_transpose ? 1 : 0));
if (b_transpose) {
std::reverse(result_shape_b.begin(), result_shape_b.end());
}
std::vector<int> result_shape;
result_shape.insert(result_shape.end(), result_shape_a.begin(), result_shape_a.end());
result_shape.insert(result_shape.end(), result_shape_b.begin(), result_shape_b.end());
return result_reshaped->view(result_shape);
}
std::shared_ptr<Array> multiply_transpose(const std::shared_ptr<Array>& a, bool a_transpose, const std::shared_ptr<Array>& b, bool b_transpose) {
if (a->shape.size() != 2 || b->shape.size() != 2) {
return multiply_transpose_higher_dim(a, a_transpose, b, b_transpose);
}
if (a->shape[a_transpose ? 0 : 1] != b->shape[b_transpose ? 1 : 0]) {
throw std::invalid_argument("Tensor shapes are not compatible for matrix multiplication.");
}
int m = a->shape[a_transpose ? 1 : 0];
int k = a->shape[a_transpose ? 0 : 1];
int n = b->shape[b_transpose ? 0 : 1];
float alpha = 1.0;
float beta = 0.0;
// A: m x k matrix
// B: k x n matrix
// C: m x n matrix (result)
// Leading dimensions
int lda = a_transpose ? m : k;
int ldb = b_transpose ? k : n;
int ldc = n;
// Perform matrix multiplication: C = alpha*A*B + beta*C
std::vector<float> c(m * n);
cblas_sgemm(CblasRowMajor, a_transpose ? CblasTrans : CblasNoTrans, b_transpose ? CblasTrans : CblasNoTrans,
m, n, k, alpha, a->data.data(), lda, b->data.data(), ldb, beta, c.data(), ldc);
return array_from_vector(c, {m, n});
}
std::shared_ptr<Array> operator%(const std::shared_ptr<Array>& a, const std::shared_ptr<Array>& b) {
return multiply_transpose(a, false, b, false);
}
std::shared_ptr<Array> squeeze(const std::shared_ptr<Array>& x) {
auto shape = x->shape;
std::vector<int> new_shape;
for (auto& s : shape) {
if (s != 1) {
new_shape.push_back(s);
}
}
return array_from_vector(x->data, new_shape);
}
std::shared_ptr<Array> softmax(const std::shared_ptr<Array>& logits, const std::vector<int>& dims) {
auto counts = exp(logits - max(logits, dims));
return counts / sum(counts, dims);
}