-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprodukt.py
167 lines (144 loc) · 9.99 KB
/
produkt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import math
import scipy
from scipy.stats import gamma
from scipy.stats import poisson
import operator
class Product:
def __init__(self, kod, supplier):
self.kod = kod
self.supplier = supplier
self.lead_time_inventory_table = {}
self.lead_time_plus_one_inventory_table = {}
self.lost_sales_probability = {}
self.memo_dict = {}
self.memo_financing_cost = {}
self.memo_lost_sales = {}
##product data here:
##demand distribution params (beta, mieu) - don't know which model we are going to use
##average_daily_demand (units)
##curr_inventory (units)
##demand_growth
##average_purchase_price (od kazdej rolki/najmniejszej jednostki, jaka mozna kupic od dostawcy)
##average_selling_price (od kazdej rolki/najmniejszej jednostki, jaka mozna kupic od dostawcy)
##client_credit_days
##lead_time_plus_one_inventory_table = {level (units), probability}
##lead_time_inventory_table = {level (units), probability}
##one_day_demand_table = {demand (units), probability}
##minimum_purchase_amount (units)
##discrete = TRUE or FALSE
def calculate_financing_inventory_cost(self, purchase_quantity, rate):
#if(str(purchase_quantity) + "-" + str(rate) in self.memo_financing_cost):
# return self.memo_financing_cost[str(purchase_quantity) + "-" + str(rate)]
#else:
total_cost = 0
for inv_level, prob in self.lead_time_plus_one_inventory_table.items():
estimated_first_cust_payment = inv_level/self.average_daily_demand + self.client_credit_days
tmp_cost = 0
for i in range(self.supplier.credit_days, int(estimated_first_cust_payment)-1):
tmp_cost += (purchase_quantity*self.average_purchase_price*rate / (1+rate)**i)
##print(int(estimated_first_cust_payment))
##print(int(estimated_first_cust_payment + purchase_quantity/self.average_daily_demand))
start_point = int(estimated_first_cust_payment)
end_point = int(estimated_first_cust_payment + purchase_quantity/self.average_daily_demand)
#for i in range(int(estimated_first_cust_payment), int(estimated_first_cust_payment + purchase_quantity/self.average_daily_demand)):
for i in range(start_point, end_point):
quantity_to_finance = purchase_quantity - self.average_daily_demand*(i-estimated_first_cust_payment+1)
tmp_cost += (quantity_to_finance * self.average_purchase_price * rate / (1+rate)**i)
total_cost += tmp_cost*prob
self.memo_financing_cost[str(purchase_quantity) + "-" + str(rate)] = total_cost
return total_cost
def calculate_financing_inventory_cost1(self, purchase_quantity, rate):
inv_level = sum(v*prob for v,prob in self.lead_time_plus_one_inventory_table.items())
estimated_first_cust_payment = inv_level/self.average_daily_demand + self.client_credit_days
tmp_cost = 0
for i in range(self.supplier.credit_days, int(estimated_first_cust_payment)-1):
tmp_cost += (purchase_quantity*self.average_purchase_price*rate / (1+rate)**i)
start_point = int(estimated_first_cust_payment)
end_point = int(estimated_first_cust_payment + purchase_quantity/self.average_daily_demand)
for i in range(start_point, end_point):
quantity_to_finance = purchase_quantity - self.average_daily_demand*(i-estimated_first_cust_payment+1)
tmp_cost += (quantity_to_finance * self.average_purchase_price * rate / (1+rate)**i)
return tmp_cost
def calculate_cost_of_lost_sales(self, purchase_quantity):
if(purchase_quantity in self.memo_lost_sales):
return self.memo_lost_sales[purchase_quantity]
else:
total_cost = 0
for loss, prob in self.lost_sales_probability.items():
new_loss = min(-loss+purchase_quantity, 0)
total_cost += (prob*new_loss * (self.average_purchase_price - self.average_selling_price))
self.memo_lost_sales[purchase_quantity] = total_cost
return total_cost
def build_demand_probability_table(self, mieu):
poisson_st_dev = mieu**(1/2)
poisson_bound = round(mieu + poisson_st_dev*5)
demand_probability_table = []
for i in range(0,poisson_bound):
poisson_prob = poisson.pmf(i, mieu) ##might have to change this to drawing the value from a table we create using PEWMA model
gamma_x = .5
while (self.memo_gamma(gamma_x, i, self.beta) - self.memo_gamma(gamma_x-0.5, i, self.beta) > 0.001 or gamma_x < i*self.beta):
if len(demand_probability_table) == 0:
demand_probability_table.append([gamma_x-.25])
demand_probability_table.append([poisson_prob*(self.memo_gamma(gamma_x, i, self.beta) - self.memo_gamma(gamma_x-0.5, i, self.beta))])
##variable += poisson_prob*(memo_gamma(gamma_x, i, beta) - memo_gamma(gamma_x-0.5, i, beta))
else:
demand_probability_table[0].append(gamma_x-.25)
demand_probability_table[1].append(poisson_prob*(self.memo_gamma(gamma_x, i, self.beta) - self.memo_gamma(gamma_x-0.5, i, self.beta)))
##variable += poisson_prob*(memo_gamma(gamma_x, i, beta) - memo_gamma(gamma_x-0.5, i, beta))
gamma_x+=0.5
return demand_probability_table
def build_demand_probability_table(self, mieu):
poisson_st_dev = mieu**(1/2)
poisson_bound = round(mieu + poisson_st_dev*6)
demand_probability_table = []
for i in range(1,poisson_bound):
poisson_prob = poisson.pmf(i, mieu) ##might have to change this to drawing the value from a table we create using PEWMA model
##print(str(i) + "," +str(poisson_prob))
gamma_prob = self.memo_gamma(1.5, i, self.beta) - self.memo_gamma(0, i, self.beta)
if len(demand_probability_table) < 1:
demand_probability_table.append([1.0])
demand_probability_table.append([poisson_prob*(gamma_prob)])
else:
demand_probability_table[0].append(1.0)
demand_probability_table[1].append(poisson_prob*(gamma_prob))
gamma_x = 2.5
gamma_prob = self.memo_gamma(gamma_x, i, self.beta) - self.memo_gamma(gamma_x-1, i, self.beta)
while (gamma_prob > 0.001 or gamma_x < i*self.beta):
demand_probability_table[0].append(gamma_x-.5)
demand_probability_table[1].append(poisson_prob*(gamma_prob))
gamma_x+=1
gamma_prob = self.memo_gamma(gamma_x, i, self.beta) - self.memo_gamma(gamma_x-1, i, self.beta)
return demand_probability_table
def build_inventory_table(self, mieu):
tmp_dict = {}
demand_table = self.build_demand_probability_table(mieu)
total_prob_processed = 0
for i in range(0, len(demand_table[0])):
inv_level = max(self.curr_inventory - demand_table[0][i], 0)
if inv_level in tmp_dict:
tmp_dict[inv_level] += demand_table[1][i]
else:
tmp_dict[inv_level] = demand_table[1][i]
total_prob_processed += demand_table[1][i]
tmp_dict[self.curr_inventory] = 1-total_prob_processed
return tmp_dict
def build_lost_sales_probability_table(self):
dt = self.build_demand_probability_table(self.mieu/self.supplier.lead_time)
##print(dt)
for i in range(0,len(dt[0])):
outer_prob = dt[1][i]
for level, prob in self.lead_time_inventory_table.items():
lost_sales = max(dt[0][i]-level,0)
if lost_sales in self.lost_sales_probability:
self.lost_sales_probability[lost_sales]+= (prob*outer_prob)
else:
self.lost_sales_probability[lost_sales]= (prob*outer_prob)
def memo_gamma(self, key, shape, scale):
if shape == 0:
return 0
else:
if str(key) + "-" + str(shape) + "-" + str(scale) in self.memo_dict:
return self.memo_dict[str(key) + "-" + str(shape) + "-" + str(scale)]
else:
self.memo_dict[str(key) + "-" + str(shape) + "-" + str(scale)] = gamma.cdf(key, shape, 0, scale)
return self.memo_dict[str(key) + "-" + str(shape) + "-" + str(scale)]