-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnp_v0.1.py
191 lines (149 loc) · 6.85 KB
/
np_v0.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Neural Processes with Tensorflow Eager Execution, Tensorflow Probability and
Keras
Based on implementions by:
1) https://kasparmartens.rbind.io/post/np/
2) https://chrisorm.github.io/NGP.html
By: Krist Papadopoulos
Date: October 11, 2018 - v0.1
"""
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_probability as tfp
tfe = tf.contrib.eager
tf.enable_eager_execution()
# define Tensorflow probability distributions
Normal = tfp.distributions.Normal
KL = tfp.distributions.kl_divergence
# define neural nets for inference and generating over data input and latent
# samples
class NP(tf.keras.Model):
def __init__(self, r_in_dim, l1_dim, r_out_dim, z_dim, de_out):
super(NP, self).__init__()
# input dimensions to represenation encoder
self.r_in_dim = r_in_dim
# representation encoder and generative net hidden dimension
self.l1_dim = l1_dim
# representation encoder output dimension
self.r_out_dim = r_out_dim
# latent dimension
self.z_dim = z_dim
# decoder output dimension
self.de_out = de_out
# representation encoder
self.r_encoder = tf.keras.Sequential(
[
tf.keras.layers.InputLayer(input_shape=(self.r_in_dim,)),
tf.keras.layers.Dense(self.l1_dim, activation=tf.nn.elu),
tf.keras.layers.Dense(self.r_out_dim)])
# inference model to estimate the posterior
self.inference_net = tf.keras.Sequential(
[
tf.keras.layers.InputLayer(input_shape=(self.r_out_dim,)),
tf.keras.layers.Dense(self.z_dim + self.z_dim)])
# generative model to estimate the likelihood p(x|z) for latent samples
self.generative_net = tf.keras.Sequential(
[
tf.keras.layers.InputLayer(input_shape=(self.z_dim, self.z_dim + self.de_out,)),
tf.keras.layers.Dense(self.l1_dim, activation=tf.nn.sigmoid),
tf.keras.layers.Dense(self.de_out)])
# function encoding and inference to estimate the posterior in latent space z
def zencode(self, x,y):
xy = tf.concat([x,y], axis=1)
r = self.r_encoder(xy)
r_agg = tf.reshape(tf.reduce_mean(r, axis=0),[1,-1])
mean, logvar = tf.split(self.inference_net(r_agg), num_or_size_splits=2, axis=1)
return mean, tf.nn.softplus(logvar)
# generation of latent samples from the posterior estimate (30 samples)
def reparameterize(self, mean, sigma, n=10):
# generate latent sample using Gaussian reparamaterization
z = mean + sigma * tf.random_normal(shape=(n, self.z_dim))
return z
# generate function samples of y_test using x_test and latent samples
def decode(self, x_star, z, noise_sd = 0.05):
N_star = tf.shape(x_star)[0]
n_draws = z.get_shape().as_list()[0]
x_star_sample = tf.tile(tf.expand_dims(x_star, [0]),(n_draws,1,1))
z_sample = tf.tile(tf.expand_dims(z, [1]),(1,N_star,1))
xz = [x_star_sample, z_sample]
xz_concat = tf.concat(xz, axis=2)
mean_x_star = tf.transpose(tf.squeeze(self.generative_net(xz_concat), axis=2))
return mean_x_star, tf.constant(noise_sd)
# define neural process loss function
def np_loss(model, x_all, y_all, x_c, y_c, x_t, y_t):
z_mean_all, z_std_all = model.zencode(x_all, y_all)
z_mean_context, z_std_context = model.zencode(x_c, y_c)
z = model.reparameterize(z_mean_all, z_std_all)
mu, std = model.decode(x_t, z)
reconstruction_error = tf.reduce_sum(Normal(loc=mu, scale=std).log_prob(y_t),axis=0)
q_z = Normal(loc=z_mean_all, scale=z_std_all)
p_z = Normal(loc=z_mean_context, scale=z_std_context)
KL_qp = KL(q_z, p_z)
KL_qp_sum = tf.reduce_sum(KL_qp)
ELBO = tf.reduce_mean(reconstruction_error - KL_qp_sum)
loss = -ELBO
return loss
# compute gradients and loss using Tensorflow Eager execution
def compute_gradients(model, x_all, y_all, x_c, y_c, x_t, y_t):
with tf.GradientTape() as tape:
loss = np_loss(model, x_all, y_all, x_c, y_c, x_t, y_t)
return tape.gradient(loss, model.trainable_variables), loss
def apply_gradients(optimizer, gradients, variables, global_step=None):
return optimizer.apply_gradients(zip(gradients, variables), global_step=global_step)
# randomly split input series into x,y context and x,y test sets
def random_split_context_target(x,y, n_context):
ind = np.arange(x.shape[0])
mask = np.random.choice(ind, size=n_context, replace=False)
return x[mask], y[mask], np.delete(x, mask, axis=0), np.delete(y, mask, axis=0)
# plot function samples for unseen x inputs
def visualise(model, x, y, x_star, epoch):
plt.figure(figsize=(8,8))
z_mu, z_std = model.zencode(x,y)
zsamples = model.reparameterize(z_mu, z_std, 30)
mu, _ = model.decode(x_star, zsamples)
for i in range(mu.shape[1]):
plt.plot(x_star.numpy(), mu.numpy()[:,i], linewidth=1)
plt.scatter(x.numpy(), y.numpy())
plt.title('Function Samples for New Input at Epoch {}'.format(epoch))
plt.xlabel('x')
plt.ylabel('y')
plt.savefig('/Users/KP/Desktop/Project/Neural_Processes/Posterior_Plots/posterior_{}.png'.format(epoch), bbox_inches='tight')
plt.clf()
plt.cla()
plt.close()
if __name__ == "__main__":
print("TensorFlow version: {}".format(tf.VERSION))
print("Eager execution: {}".format(tf.executing_eagerly()))
r_in_dim = 2
l1_dim = 8
r_out_dim = 2
z_dim = 2
de_out = 1
epochs = 10001
lr_init = 0.001
lr = tfe.Variable(lr_init, name = "learning_rate", trainable=False)
optimizer = tf.train.AdamOptimizer(lr)
model = NP(r_in_dim, l1_dim, r_out_dim, z_dim, de_out)
# define input range
all_x_np = np.arange(-2,3,1).reshape(-1,1).astype(np.float32)
# define output range (tests peformed with noise)
all_y_np = np.sin(all_x_np) #+ np.random.normal(size=1).astype(np.float32)
loss_list = []
for epoch in range(epochs):
x_context, y_context, x_target, y_target = random_split_context_target(
all_x_np, all_y_np, np.random.randint(1,4))
x_c = tfe.Variable(x_context)
x_t = tfe.Variable(x_target)
y_c = tfe.Variable(y_context)
y_t = tfe.Variable(y_target)
x_all = tf.concat([x_c, x_t], axis=0)
y_all = tf.concat([y_c, y_t], axis=0)
gradients, loss = compute_gradients(model, x_all, y_all, x_c, y_c, x_t, y_t)
apply_gradients(optimizer, gradients, model.trainable_variables)
loss_list.append(loss)
if epoch % 200 == 0:
x_g = tfe.Variable(np.arange(-4,4, 0.1).reshape(-1,1).astype(np.float32))
visualise(model, x_all, y_all, x_g, epoch)