-
-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathtrain_DDP.py
executable file
·583 lines (516 loc) · 25.7 KB
/
train_DDP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import datasets, transforms
import torch.backends.cudnn as cudnn
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
#from PIL import Image
import time
import os
import collections
from tqdm import tqdm
from model import ft_net, ft_net_dense, ft_net_hr, ft_net_swin, ft_net_swinv2, ft_net_convnext, ft_net_efficient, ft_net_NAS, PCB
from random_erasing import RandomErasing
from dgfolder import DGFolder
import yaml
from shutil import copyfile
from circle_loss import CircleLoss, convert_label_to_similarity
from instance_loss import InstanceLoss
from ODFA import ODFA
from utils import save_network
version = torch.__version__
#fp16
try:
from apex.fp16_utils import *
from apex import amp
from apex.optimizers import FusedSGD
except ImportError: # will be 3.x series
print('This is not an error. If you want to use low precision, i.e., fp16, please install the apex with cuda support (https://github.com/NVIDIA/apex) and update pytorch to 1.0')
from pytorch_metric_learning import losses, miners #pip install pytorch-metric-learning
######################################################################
# Options
# --------
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--gpu_ids',default='0', type=str,help='gpu_ids: e.g. 0 0,1,2 0,2')
# in new pytorch, local_rank -> local-rank
parser.add_argument('--local-rank', type=int,help='gpu_ids: e.g. 0 0,1,2 0,2')
parser.add_argument('--name',default='ft_ResNet50', type=str, help='output model name')
# data
parser.add_argument('--data_dir',default='../Market/pytorch',type=str, help='training dir path')
parser.add_argument('--train_all', action='store_true', help='use all training data' )
parser.add_argument('--batchsize', default=32, type=int, help='batchsize')
parser.add_argument('--color_jitter', action='store_true', help='use color jitter in training' )
parser.add_argument('--erasing_p', default=0, type=float, help='Random Erasing probability, in [0,1]')
parser.add_argument('--DG', action='store_true', help='use extra DG-Market Dataset for training. Please download it from https://github.com/NVlabs/DG-Net#dg-market.' )
# optimizer
parser.add_argument('--lr', default=0.05, type=float, help='learning rate')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay. More Regularization Smaller Weight.')
parser.add_argument('--total_epoch', default=60, type=int, help='total training epoch')
parser.add_argument('--fp16', action='store_true', help='use float16 instead of float32, which will save about 50%% memory' )
parser.add_argument('--cosine', action='store_true', help='use cosine lrRate' )
parser.add_argument('--FSGD', action='store_true', help='use fused sgd, which will speed up trainig slightly. apex is needed.' )
# backbone
parser.add_argument('--linear_num', default=512, type=int, help='feature dimension: 512 or default or 0 (linear=False)')
parser.add_argument('--stride', default=2, type=int, help='stride')
parser.add_argument('--droprate', default=0.5, type=float, help='drop rate')
parser.add_argument('--use_dense', action='store_true', help='use densenet121' )
parser.add_argument('--use_swin', action='store_true', help='use swin transformer 224x224' )
parser.add_argument('--use_swinv2', action='store_true', help='use swin transformerv2' )
parser.add_argument('--use_efficient', action='store_true', help='use efficientnet-b4' )
parser.add_argument('--use_NAS', action='store_true', help='use NAS' )
parser.add_argument('--use_hr', action='store_true', help='use hrNet' )
parser.add_argument('--use_convnext', action='store_true', help='use ConvNext' )
parser.add_argument('--ibn', action='store_true', help='use resnet+ibn' )
parser.add_argument('--PCB', action='store_true', help='use PCB+ResNet50' )
# loss
parser.add_argument('--warm_epoch', default=0, type=int, help='the first K epoch that needs warm up')
parser.add_argument('--arcface', action='store_true', help='use ArcFace loss' )
parser.add_argument('--circle', action='store_true', help='use Circle loss' )
parser.add_argument('--cosface', action='store_true', help='use CosFace loss' )
parser.add_argument('--contrast', action='store_true', help='use contrast loss' )
parser.add_argument('--instance', action='store_true', help='use instance loss' )
parser.add_argument('--ins_gamma', default=32, type=int, help='gamma for instance loss')
parser.add_argument('--triplet', action='store_true', help='use triplet loss' )
parser.add_argument('--lifted', action='store_true', help='use lifted loss' )
parser.add_argument('--sphere', action='store_true', help='use sphere loss' )
parser.add_argument('--adv', default=0.0, type=float, help='use adv loss as 1.0' )
parser.add_argument('--aiter', default=10, type=float, help='use adv loss with iter' )
opt = parser.parse_args()
fp16 = opt.fp16
data_dir = opt.data_dir
name = opt.name
str_ids = opt.gpu_ids.split(',')
gpu_ids = []
for str_id in str_ids:
gid = int(str_id)
if gid >=0:
gpu_ids.append(gid)
opt.gpu_ids = gpu_ids
# set gpu ids
cudnn.enabled = True
cudnn.benchmark = True
torch.distributed.init_process_group(backend='gloo',
init_method='env://')
opt.world_size = torch.distributed.get_world_size()
######################################################################
# Load Data
# ---------
#
if opt.use_swin:
h, w = 224, 224
else:
h, w = 256, 128
transform_train_list = [
#transforms.RandomResizedCrop(size=128, scale=(0.75,1.0), ratio=(0.75,1.3333), interpolation=3), #Image.BICUBIC)
transforms.Resize((h, w), interpolation=3),
transforms.Pad(10),
transforms.RandomCrop((h, w)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
transform_val_list = [
transforms.Resize(size=(h, w),interpolation=3), #Image.BICUBIC
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
if opt.PCB:
transform_train_list = [
transforms.Resize((384,192), interpolation=3),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
transform_val_list = [
transforms.Resize(size=(384,192),interpolation=3), #Image.BICUBIC
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
if opt.erasing_p>0:
transform_train_list = transform_train_list + [RandomErasing(probability = opt.erasing_p, mean=[0.0, 0.0, 0.0])]
if opt.color_jitter:
transform_train_list = [transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0)] + transform_train_list
print(transform_train_list)
data_transforms = {
'train': transforms.Compose( transform_train_list ),
'val': transforms.Compose(transform_val_list),
}
train_all = ''
if opt.train_all:
train_all = '_all'
image_datasets = {}
image_datasets['train'] = datasets.ImageFolder(os.path.join(data_dir, 'train' + train_all),
data_transforms['train'])
image_datasets['val'] = datasets.ImageFolder(os.path.join(data_dir, 'val'),
data_transforms['val'])
import multiprocessing
cpu_count = multiprocessing.cpu_count()
opt.workers = 4
opt.prefetch_factor = 2
if cpu_count>=32:
opt.workers = 8
opt.prefetch_factor = 4
img_sampler ={x: torch.utils.data.distributed.DistributedSampler(image_datasets[x]) for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=opt.batchsize,
shuffle=False, sampler=img_sampler[x],
num_workers=opt.workers, pin_memory=True, drop_last=True,
prefetch_factor=opt.prefetch_factor, persistent_workers=True) # 2 workers may work faster
for x in ['train', 'val']}
# Use extra DG-Market Dataset for training. Please download it from https://github.com/NVlabs/DG-Net#dg-market.
if opt.DG:
if not os.path.isdir('../DG-Market'):
os.system('gdown 126Gn90Tzpk3zWp2c7OBYPKc-ZjhptKDo')
os.system('unzip DG-Market.zip -d ../')
os.system('rm DG-Market.zip')
image_datasets['DG'] = DGFolder(os.path.join('../DG-Market' ),
data_transforms['train'])
dataloaders['DG'] = torch.utils.data.DataLoader(image_datasets['DG'], batch_size = max(8, opt.batchsize//2),
shuffle=True, num_workers=2, pin_memory=True)
DGloader_iter = enumerate(dataloaders['DG'])
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
use_gpu = torch.cuda.is_available()
since = time.time()
inputs, classes = next(iter(dataloaders['train']))
print(time.time()-since)
######################################################################
# Training the model
# ------------------
#
# Now, let's write a general function to train a model. Here, we will
# illustrate:
#
# - Scheduling the learning rate
# - Saving the best model
#
# In the following, parameter ``scheduler`` is an LR scheduler object from
# ``torch.optim.lr_scheduler``.
y_loss = {} # loss history
y_loss['train'] = []
y_loss['val'] = []
y_err = {}
y_err['train'] = []
y_err['val'] = []
def fliplr(img):
'''flip horizontal'''
inv_idx = torch.arange(img.size(3)-1,-1,-1).long().cuda() # N x C x H x W
img_flip = img.index_select(3,inv_idx)
return img_flip
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
#best_model_wts = model.state_dict()
#best_acc = 0.0
warm_up = 0.1 # We start from the 0.1*lrRate
warm_iteration = round(dataset_sizes['train']/opt.batchsize)*opt.warm_epoch # first 5 epoch
if opt.arcface:
criterion_arcface = losses.ArcFaceLoss(num_classes=opt.nclasses, embedding_size=512)
if opt.cosface:
criterion_cosface = losses.CosFaceLoss(num_classes=opt.nclasses, embedding_size=512)
if opt.circle:
criterion_circle = CircleLoss(m=0.25, gamma=32) # gamma = 64 may lead to a better result.
if opt.triplet:
miner = miners.MultiSimilarityMiner()
criterion_triplet = losses.TripletMarginLoss(margin=0.3)
if opt.lifted:
criterion_lifted = losses.GeneralizedLiftedStructureLoss(neg_margin=1, pos_margin=0)
if opt.contrast:
criterion_contrast = losses.ContrastiveLoss(pos_margin=0, neg_margin=1)
if opt.instance:
criterion_instance = InstanceLoss(gamma = opt.ins_gamma)
if opt.sphere:
criterion_sphere = losses.SphereFaceLoss(num_classes=opt.nclasses, embedding_size=512, margin=4)
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
# print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
# Phases 'train' and 'val' are visualized in two separate progress bars
pbar = tqdm()
pbar.reset(total=len(dataloaders[phase].dataset))
ordered_dict = collections.OrderedDict(phase="", Loss="", Acc="")
running_loss = 0.0
running_corrects = 0.0
# Iterate over data.
for iter, data in enumerate(dataloaders[phase]):
# get the inputs
inputs, labels = data
now_batch_size,c,h,w = inputs.shape
pbar.update(now_batch_size) # update the pbar even in the last batch
if now_batch_size<opt.batchsize: # skip the last batch
continue
#print(inputs.shape)
# wrap them in Variable
if use_gpu:
inputs = inputs.cuda(opt.local_rank, non_blocking=True)
labels = labels.cuda(opt.local_rank, non_blocking=True)
# if we use low precision, input also need to be fp16
#if fp16:
# inputs = inputs.half()
# zero the parameter gradients
optimizer.zero_grad()
# forward
if phase == 'val':
with torch.no_grad():
outputs = model(inputs)
else:
outputs = model(inputs)
if opt.adv>0 and iter%opt.aiter==0:
inputs_adv = ODFA(model, inputs)
outputs_adv = model(inputs_adv)
sm = nn.Softmax(dim=1)
log_sm = nn.LogSoftmax(dim=1)
return_feature = opt.arcface or opt.cosface or opt.circle or opt.triplet or opt.contrast or opt.instance or opt.lifted or opt.sphere
if return_feature:
logits, ff = outputs
fnorm = torch.norm(ff, p=2, dim=1, keepdim=True)
ff = ff.div(fnorm.expand_as(ff))
loss = criterion(logits, labels)
_, preds = torch.max(logits.data, 1)
if opt.adv>0 and iter%opt.aiter==0:
logits_adv, _ = outputs_adv
loss += opt.adv * criterion(logits_adv, labels)
if opt.arcface:
loss += criterion_arcface(ff, labels)/now_batch_size
if opt.cosface:
loss += criterion_cosface(ff, labels)/now_batch_size
if opt.circle:
loss += criterion_circle(*convert_label_to_similarity( ff, labels))/now_batch_size
if opt.triplet:
hard_pairs = miner(ff, labels)
loss += criterion_triplet(ff, labels, hard_pairs) #/now_batch_size
if opt.lifted:
loss += criterion_lifted(ff, labels) #/now_batch_size
if opt.contrast:
loss += criterion_contrast(ff, labels) #/now_batch_size
if opt.instance:
loss += criterion_instance(ff) /now_batch_size
if opt.sphere:
loss += criterion_sphere(ff, labels)/now_batch_size
elif opt.PCB: # PCB
part = {}
num_part = 6
for i in range(num_part):
part[i] = outputs[i]
score = sm(part[0]) + sm(part[1]) +sm(part[2]) + sm(part[3]) +sm(part[4]) +sm(part[5])
_, preds = torch.max(score.data, 1)
loss = criterion(part[0], labels)
for i in range(num_part-1):
loss += criterion(part[i+1], labels)
else: # norm
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
if opt.adv>0 and iter%opt.aiter==0:
loss += opt.adv * criterion(outputs_adv, labels)
del inputs
# use extra DG Dataset (https://github.com/NVlabs/DG-Net#dg-market)
if opt.DG and phase == 'train' and epoch > num_epochs*0.1:
# print("DG-Market is involved. It will double the training time.")
try:
_, batch = DGloader_iter.__next__()
except StopIteration:
DGloader_iter = enumerate(dataloaders['DG'])
_, batch = DGloader_iter.__next__()
except UnboundLocalError: # first iteration
DGloader_iter = enumerate(dataloaders['DG'])
_, batch = DGloader_iter.__next__()
inputs1, inputs2, _ = batch
inputs1 = inputs1.cuda().detach()
inputs2 = inputs2.cuda().detach()
# use memory in vivo loss (https://arxiv.org/abs/1912.11164)
outputs1 = model(inputs1)
if return_feature:
outputs1, _ = outputs1
elif opt.PCB:
for i in range(num_part):
part[i] = outputs1[i]
outputs1 = part[0] + part[1] + part[2] + part[3] + part[4] + part[5]
outputs2 = model(inputs2)
if return_feature:
outputs2, _ = outputs2
elif opt.PCB:
for i in range(num_part):
part[i] = outputs2[i]
outputs2 = part[0] + part[1] + part[2] + part[3] + part[4] + part[5]
mean_pred = sm(outputs1 + outputs2)
kl_loss = nn.KLDivLoss(reduction='batchmean')
reg= (kl_loss(log_sm(outputs2) , mean_pred) + kl_loss(log_sm(outputs1) , mean_pred))/2
loss += 0.01*reg
del inputs1, inputs2
#print(0.01*reg)
# backward + optimize only if in training phase
if epoch<opt.warm_epoch and phase == 'train':
warm_up = min(1.0, warm_up + 0.9 / warm_iteration)
loss = loss*warm_up
print(loss, warm_up)
if phase == 'train':
if fp16: # we use optimier to backward loss
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
# statistics
if int(version[0])>0 or int(version[2]) > 3: # for the new version like 0.4.0, 0.5.0 and 1.0.0
running_loss += loss.item() * now_batch_size
ordered_dict["Loss"] = f"{loss.item():.4f}"
else : # for the old version like 0.3.0 and 0.3.1
running_loss += loss.data[0] * now_batch_size
ordered_dict["Loss"] = f"{loss.data[0]:.4f}"
del loss
running_corrects += float(torch.sum(preds == labels.data))
# Refresh the progress bar in every batch
ordered_dict["phase"] = phase
ordered_dict[
"Acc"
] = f"{(float(torch.sum(preds == labels.data)) / now_batch_size):.4f}"
pbar.set_postfix(ordered_dict=ordered_dict)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects / dataset_sizes[phase]
# print('{} Loss: {:.4f} Acc: {:.4f}'.format(
# phase, epoch_loss, epoch_acc))
ordered_dict["phase"] = phase
ordered_dict["Loss"] = f"{epoch_loss:.4f}"
ordered_dict["Acc"] = f"{epoch_acc:.4f}"
pbar.set_postfix(ordered_dict=ordered_dict)
pbar.close()
y_loss[phase].append(epoch_loss)
y_err[phase].append(1.0-epoch_acc)
# deep copy the model
if opt.local_rank == 0 and phase == 'val' and ( (epoch+1)%10 == 0 or epoch == num_epochs - 1):
print('saving...')
last_model_wts = model.state_dict()
save_network(model.module, opt.name, epoch+1, opt.local_rank)
if phase == 'val':
draw_curve(epoch)
if phase == 'train':
scheduler.step()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
#print('Best val Acc: {:4f}'.format(best_acc)
# load best model weights
if opt.local_rank == 0:
model.load_state_dict(last_model_wts)
save_network(model.module, opt.name, 'last', opt.local_rank)
return model
######################################################################
# Draw Curve
#---------------------------
x_epoch = []
fig = plt.figure()
ax0 = fig.add_subplot(121, title="loss")
ax1 = fig.add_subplot(122, title="top1err")
def draw_curve(current_epoch):
x_epoch.append(current_epoch)
ax0.plot(x_epoch, y_loss['train'], 'bo-', label='train')
ax0.plot(x_epoch, y_loss['val'], 'ro-', label='val')
ax1.plot(x_epoch, y_err['train'], 'bo-', label='train')
ax1.plot(x_epoch, y_err['val'], 'ro-', label='val')
if current_epoch == 0:
ax0.legend()
ax1.legend()
fig.savefig( os.path.join('./model',name,'train.jpg'))
######################################################################
# Finetuning the convnet
# ----------------------
#
# Load a pretrainied model and reset final fully connected layer.
#
return_feature = opt.arcface or opt.cosface or opt.circle or opt.triplet or opt.contrast or opt.instance or opt.lifted or opt.sphere
if opt.use_dense:
model = ft_net_dense(len(class_names), opt.droprate, opt.stride, circle = return_feature, linear_num=opt.linear_num)
elif opt.use_NAS:
model = ft_net_NAS(len(class_names), opt.droprate, linear_num=opt.linear_num)
elif opt.use_swin:
model = ft_net_swin(len(class_names), opt.droprate, opt.stride, circle = return_feature, linear_num=opt.linear_num)
elif opt.use_swinv2:
model = ft_net_swinv2(len(class_names), (h, w), opt.droprate, opt.stride, circle = return_feature, linear_num=opt.linear_num)
elif opt.use_efficient:
model = ft_net_efficient(len(class_names), opt.droprate, circle = return_feature, linear_num=opt.linear_num)
elif opt.use_hr:
model = ft_net_hr(len(class_names), opt.droprate, circle = return_feature, linear_num=opt.linear_num)
elif opt.use_convnext:
model = ft_net_convnext(len(class_names), opt.droprate, circle = return_feature, linear_num=opt.linear_num)
else:
model = ft_net(len(class_names), opt.droprate, opt.stride, circle = return_feature, ibn=opt.ibn, linear_num=opt.linear_num)
if opt.PCB:
model = PCB(len(class_names))
opt.nclasses = len(class_names)
print(model)
# model to gpu
model = model.cuda()
optim_name = optim.SGD #apex.optimizers.FusedSGD
if opt.FSGD: # apex is needed
optim_name = FusedSGD
if not opt.PCB:
ignored_params = list(map(id, model.classifier.parameters() ))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
classifier_params = model.classifier.parameters()
optimizer_ft = optim_name([
{'params': base_params, 'lr': 0.1*opt.lr},
{'params': classifier_params, 'lr': opt.lr}
], weight_decay=opt.weight_decay, momentum=0.9, nesterov=True)
else:
ignored_params = list(map(id, model.model.fc.parameters() ))
ignored_params += (list(map(id, model.classifier0.parameters() ))
+list(map(id, model.classifier1.parameters() ))
+list(map(id, model.classifier2.parameters() ))
+list(map(id, model.classifier3.parameters() ))
+list(map(id, model.classifier4.parameters() ))
+list(map(id, model.classifier5.parameters() ))
#+list(map(id, model.classifier6.parameters() ))
#+list(map(id, model.classifier7.parameters() ))
)
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
classifier_params = filter(lambda p: id(p) in ignored_params, model.parameters())
optimizer_ft = optim_name([
{'params': base_params, 'lr': 0.1*opt.lr},
{'params': classifier_params, 'lr': opt.lr}
], weight_decay=opt.weight_decay, momentum=0.9, nesterov=True)
# Decay LR by a factor of 0.1 every 40 epochs
exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=opt.total_epoch*2//3, gamma=0.1)
if opt.cosine:
exp_lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer_ft, opt.total_epoch, eta_min=0.01*opt.lr)
######################################################################
# Train and evaluate
# ^^^^^^^^^^^^^^^^^^
#
# It should take around 1-2 hours on GPU.
#
dir_name = os.path.join('./model',name)
if not os.path.isdir(dir_name):
os.mkdir(dir_name)
#record every run
copyfile('./train.py', dir_name+'/train.py')
copyfile('./model.py', dir_name+'/model.py')
# save opts
with open('%s/opts.yaml'%dir_name,'w') as fp:
yaml.dump(vars(opt), fp, default_flow_style=False)
criterion = nn.CrossEntropyLoss()
if fp16:
#model = network_to_half(model)
#optimizer_ft = FP16_Optimizer(optimizer_ft, static_loss_scale = 128.0)
model, optimizer_ft = amp.initialize(model, optimizer_ft, opt_level = "O1")
#if torch.cuda.get_device_capability()[0]>6 and len(opt.gpu_ids)==1 and int(version[0])>1: # should be >=7 and one gpu
# torch.set_float32_matmul_precision('high')
# print("Compiling model... The first epoch may be slow, which is expected!")
# https://huggingface.co/docs/diffusers/main/en/optimization/torch2.0
# model = torch.compile(model, mode="reduce-overhead", dynamic = True) # pytorch 2.0
model = model.to(opt.local_rank)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[opt.local_rank], output_device=0, find_unused_parameters=True)
model = train_model(model, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=opt.total_epoch)