-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConstruct_Binary_Tree_from_Inorder_and_Postorder_Traversal.cpp
46 lines (42 loc) · 1.65 KB
/
Construct_Binary_Tree_from_Inorder_and_Postorder_Traversal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/*
Construct Binary Tree from Inorder and Postorder Traversal
Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
*/
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode *buildTreeHelper(vector<int> &inorder, int inLeft, int inRight,
vector<int> &postorder, int postLeft, int postRight) {
if (inLeft > inRight) return NULL;
// The last element in post-order sequence is the root of the tree.
TreeNode *root = new TreeNode(postorder[postRight]);
for (int i=inLeft; i<=inRight; i++) {
// Find the root in the in-order sequence.
if (inorder[i] == root->val) {
int leftNum = i - inLeft;
// The in-order sequence is split into two parts by the root.
// The former part is left-sub-tree.
root->left = buildTreeHelper(inorder, inLeft, i-1,
postorder, postLeft, postLeft+leftNum-1);
// The later part is right-sub-tree;
root->right = buildTreeHelper(inorder, i+1, inRight,
postorder, postLeft+leftNum, postRight-1);
return root;
}
}
}
TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
int n = inorder.size();
return buildTreeHelper(inorder, 0, n-1, postorder, 0, n-1);
}
};