This repository has been archived by the owner on Jan 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 923
/
Copy pathSudoku.qs
288 lines (277 loc) · 12.5 KB
/
Sudoku.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.
namespace Microsoft.Quantum.Samples.SudokuGrover {
open Microsoft.Quantum.Arithmetic;
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Logical;
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Measurement;
open Microsoft.Quantum.Preparation;
open Microsoft.Quantum.Samples.ColoringGroverWithConstraints;
/// # Summary
/// Solve a Sudoku puzzle using Grover's algorithm.
///
/// # Description
/// Sudoku is a graph coloring problem where graph edges must connect nodes
/// of different colors.
/// In our case, graph nodes are puzzle squares and colors are the Sudoku numbers.
/// Graph edges are the constraints preventing squares from having the same values.
/// To reduce the number of qubits needed, we only use qubits for empty squares.
/// We define the puzzle using 2 data structures:
///
/// - A list of edges connecting empty squares
/// - A list of constraints on empty squares to the initial numbers
/// in the puzzle (starting numbers)
/// The code works for both 9x9 Sudoku puzzles, and 4x4 Sudoku puzzles.
/// This description will use a 4x4 puzzle to make it easier to understand.
/// The 4x4 puzzle is solved with number 0 to 3 instead of 1 to 4.
/// This is because we can encode 0-3 with 2 qubits.
/// However, the same rules apply:
/// - The numbers 0 to 3 may only appear once per row, column and 2x2 sub squares.
/// As an example has solution
/// _________________ _________________
/// | | 1 | | 3 | | 0 | 1 | 2 | 3 |
/// ----------------- -----------------
/// | 2 | | | 1 | | 2 | 3 | 0 | 1 |
/// ----------------- -----------------
/// | | | 3 | 0 | | 1 | 2 | 3 | 0 |
/// ----------------- -----------------
/// | 3 | | 1 | | | 3 | 0 | 1 | 2 |
/// ----------------- -----------------
///
/// In the above example, the edges/constraints for the top row are:
/// _________
/// | ______ \ _____
/// || __ \ \ | __ \ __
/// _|||__\___\_ _\__ ______||__\___\__ _________|___\__
/// | | 1 | | 3 | | | 1 | | 3 | | | 1 | | 3 |
/// ----------------- ----------------- -----------------
///
/// For the row above, the empty squares have indexes
/// _________________
/// | 0 | | 1 | |
/// -----------------
/// For this row the list of emptySquareEdges has only 1 entry:
/// emptySquareEdges = (0,1)
/// i.e. empty square 0 can't have the same number as empty square 1.
/// The constraints on these empty squares to the starting numbers are:
/// startingNumberConstraints = (0,1) (0,3) (1,1) (1,3)
/// This is a list of (empty square #, number it can't be).
/// i.e. empty square 0 can't have value 1 or 3,
/// and empty square #1 can't have values 1 or 3.
///
/// # Input
/// ## nVertices
/// number of blank squares.
/// ## size
/// The size of the puzzle. 4 for 4x4 grid, 9 for 9x9 grid.
/// ## emptySquareEdges
/// The traditional edges passed to the graph coloring algorithm which,
/// in our case, are empty puzzle squares.
/// These edges define any "same row", "same column", "same sub-grid"
/// relationships between empty cells.
/// Look at the README.md sample output to see examples of what this is
/// for different sample puzzles.
/// ## startingNumberConstraints
/// The constraints on the empty squares due to numbers already in the
/// puzzle when we start.
/// Look at the README.md sample output to see examples of what this is
/// for different sample puzzles.
///
/// # Output
/// A tuple with Result and the array of numbers for each empty square.
/// Look at the README.md sample output to see examples of what this is
/// for different sample puzzles.
///
/// # Remarks
/// The inputs and outputs for the following 4x4 puzzle are:
/// -----------------
/// | | 1 | 2 | 3 | <--- empty square #0
/// -----------------
/// | 2 | | 0 | 1 | <--- empty square #1
/// -----------------
/// | 1 | 2 | 3 | 0 |
/// -----------------
/// | 3 | | 1 | 2 | <--- empty square #2
/// -----------------
/// emptySquareEdges = [(1, 0),(2, 1)]
/// empty square #0 can not have the same color/number as empty call #1.
/// empty square #1 and #2 can not have the same color/number (same column).
/// startingNumberConstraints = [(0, 2),(0, 1),(0, 3),(1, 1),(1, 2),(1, 0),(2, 1),(2, 2),(2, 3)]
/// empty square #0 can not have values 2,1,3 because same row/column/2x2grid.
/// empty square #1 can not have values 1,2,0 because same row/column/2x2grid.
/// Results = [0,3,0] i.e. Empty Square #0 = 0, Empty Square #1 = 3, Empty Square #2 = 0.
operation SolvePuzzle(
nVertices : Int, size : Int,
emptySquareEdges : (Int, Int)[],
startingNumberConstraints: (Int, Int)[]
)
: (Bool, Int[]) {
if size != 4 and size != 9 {
fail $"Cannot set size {size}: only a grid size of 4x4 or 9x9 is supported";
}
let bitsPerColor = size == 9 ? 4 | 2;
let oracle = ApplyVertexColoringOracle(nVertices, bitsPerColor, emptySquareEdges, _, _);
let statePrep = PrepareSearchStatesSuperposition(nVertices, bitsPerColor, startingNumberConstraints, _);
let searchSpaceSize = SearchSpaceSize(nVertices, bitsPerColor, startingNumberConstraints);
let numIterations = NIterations(searchSpaceSize);
Message($"Running Quantum test with # of vertices = {nVertices}");
Message($" Bits Per Color = {bitsPerColor}");
Message($" emptySquareEdges = {emptySquareEdges}");
Message($" startingNumberConstraints = {startingNumberConstraints}");
Message($" Estimated #iterations needed = {numIterations}");
Message($" Size of Sudoku grid = {size}x{size}");
Message($" Search space size = {searchSpaceSize}");
let coloring = FindColorsWithGrover(nVertices, bitsPerColor, numIterations, oracle, statePrep);
Message($"Got Sudoku solution: {coloring}");
if (IsSudokuSolutionValid(size, emptySquareEdges, startingNumberConstraints, coloring)) {
Message($"Got valid Sudoku solution: {coloring}");
return (true, coloring);
} else {
Message($"Got invalid Sudoku solution: {coloring}");
return (false, coloring);
}
}
/// # Summary
/// Encodes stating number constraints into amplitudes.
///
/// # Inputs
/// ## nVertices
/// The number of vertices in the graph.
/// ## bitsPerColor
/// The bit width for number of colors.
/// ## startingNumberConstraints
/// The array of (Vertex#, Color) specifying the disallowed colors for vertices.
///
/// # Examples
/// Consider the case where we have 2 vertices, 2 bits per color, and the constraints (0,1),(0,2),(0,3),(1,2).
/// Then we would get the result where all non-disallowed values have a 1.0 amplitude:
/// [[1.0, 0.0, 0.0, 0.0],
/// [1.0, 1.0, 0.0, 1.0]]
///
///
/// # Output
/// A 2D array of amplitudes where the first index is the cell and the second index is the value of a basis state (i.e., value) for the cell. =
/// Allowed amplitudes will have a value 1.0, disallowed amplitudes 0.0
function AllowedAmplitudes(
nVertices : Int,
bitsPerColor : Int,
startingNumberConstraints : (Int, Int)[]
) : Double[][] {
mutable amplitudes = [[1.0, size=1 <<< bitsPerColor], size=nVertices];
for (cell, value) in startingNumberConstraints {
set amplitudes w/= cell <- (amplitudes[cell] w/ value <- 0.0);
}
return amplitudes;
}
/// # Summary
/// Prepare an equal superposition of all basis states that satisfy the constraints
/// imposed by the digits already placed in the grid.
///
/// # Inputs
/// ## nVertices
/// The number of vertices in the graph.
/// ## bitsPerColor
/// The bit width for number of colors.
/// ## startingNumberConstraints
/// The array of (Vertex#, Color) specifying the disallowed colors for vertices.
///
/// # Remarks
/// Prepares the search space. Using the allowed amplitudes prepares uniform superposition of all allowed values for each cell
operation PrepareSearchStatesSuperposition(
nVertices : Int,
bitsPerColor : Int,
startingNumberConstraints : (Int, Int)[],
register : Qubit[]
) : Unit is Adj + Ctl {
// Split the given register into nVertices chunks of size bitsPerColor.
let colorRegisters = Chunks(bitsPerColor, register);
// For each vertex, create an array of possible states we're looking at.
let amplitudes = AllowedAmplitudes(nVertices, bitsPerColor, startingNumberConstraints);
// For each vertex, prepare a superposition of its possible states on the chunk storing its color.
for (amps, chunk) in Zipped(amplitudes, colorRegisters) {
PrepareArbitraryStateD(amps, LittleEndian(chunk));
}
}
/// # Summary
/// Show the size of the search space, i.e. the number of possible combinations
///
/// # Inputs
/// ## nVertices
/// The number of vertices in the graph.
/// ## bitsPerColor
/// The bit width for number of colors.
/// ## startingNumberConstraints
/// The array of (Vertex#, Color) specifying the disallowed colors for vertices.
///
/// # Output
/// The size of the search space (i.e., number of possible combinations)
function SearchSpaceSize(
nVertices : Int,
bitsPerColor : Int,
startingNumberConstraints : (Int, Int)[]
) : Int {
mutable colorOptions = [1 <<< bitsPerColor, size=nVertices];
for (cell, _) in startingNumberConstraints {
set colorOptions w/= cell <- colorOptions[cell] - 1;
}
return Fold(TimesI, 1, colorOptions);
}
/// # Summary
/// Estimate the number of iterations required for solution.
///
/// # Input
/// ## searchSpaceSize
/// The size of the search space.
///
/// # Remarks
/// This is correct for an amplitude amplification problem with a single
/// correct solution, but would need to be adapted when there are multiple
/// solutions
function NIterations(searchSpaceSize : Int) : Int {
let angle = ArcSin(1. / Sqrt(IntAsDouble(searchSpaceSize)));
let nIterations = Round(0.25 * PI() / angle - 0.5);
return nIterations;
}
/// # Summary
/// Check if the colors/numbers found for each empty square are in the correct
/// range (e.g. <9 for a 9x9 puzzle) and satisfy all edge/starting number constraints.
///
/// # Input
/// ## size
/// The size of the puzzle. 4 for 4x4 grid, 9 for 9x9 grid.
/// ## edges
/// The traditional edges passed to the graph coloring algorithm which,
/// in our case, are empty puzzle squares.
/// These edges define any "same row", "same column", "same sub-grid"
/// relationships between empty cells.
/// Look at the README.md sample output to see examples of what this is
/// for different sample puzzles.
/// ## startingNumberConstraints
/// The constraints on the empty squares due to numbers already in the
/// puzzle when we start. Look at the README.md sample output to see
/// examples of what this is for different sample puzzles.
/// ## colors
/// An Int array of numbers for each empty square i.e. the puzzle solution.
///
/// # Output
/// A boolean value of true if the colors found satisfy all the solution requirements.
function IsSudokuSolutionValid (
size : Int,
edges : (Int, Int)[],
startingNumberConstraints : (Int, Int)[],
colors : Int[]
)
: Bool {
if (Any(GreaterThanOrEqualI(_, size), colors)) { return false; }
if (Any(EqualI, edges)) { return false; }
for (index, startingNumber) in startingNumberConstraints {
if (colors[index] == startingNumber) {
return false;
}
}
return true;
}
}