This repository has been archived by the owner on Jan 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 923
/
Copy pathProgram.cs
277 lines (220 loc) · 13.7 KB
/
Program.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#region Using Statements
// We will need several different libraries in this sample.
// Here, we expose these libraries to our program using the
// C# "using" statement, similar to the Q# "open" statement.
// We will use the data model implemented by the Quantum Development Kit chemistry
// libraries. This model defines what a fermionic Hamiltonian is, and how to
// represent Hamiltonians on disk.
using Microsoft.Quantum.Chemistry.OrbitalIntegrals;
using Microsoft.Quantum.Chemistry.Fermion;
// The System namespace provides a number of useful built-in
// types and methods that we'll use throughout this sample.
using System;
// We use this for convenience methods for manipulating arrays.
using System.Linq;
#endregion
namespace Microsoft.Quantum.Chemistry.Samples.Hubbard
{
class Program
{
static void Main(string[] args)
{
//////////////////////////////////////////////////////////////////////////
// Introduction //////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// In this example, we will create a representation of a
// 1D Hubbard Hamiltonian using the quantum chemistry library.
// This representation allows one to easily simulate Hamiltonian
// time-evolution and obtain the cost of simulation.
// The 1D Hubbard model has `n` sites. Let `i` be the site index,
// `s` = 1,0 be the spin index, where 0 is up and 1 is down, `t` be the
// hopping coefficient, `u` the repulsion coefficient, and aᵢₛ the fermionic
// annihilation operator on the fermion indexed by `(i,s)`. The Hamiltonian
// of this model is
//
// H ≔ - t/2 Σᵢ (a†ᵢₛ aᵢ₊₁ₛ + a†ᵢ₊₁ₛ aᵢₛ) + u Σᵢ a†ᵢ₀ a†ᵢ₁ aᵢ₁ aᵢ₀
//
// Note that we use closed boundary conditions.
// Contents:
// - Spin-orbital representation
// - Hamiltonian term representation
// - Hamiltonian representation
// - Building the Hubbard Hamiltonian
// - Building the Hubbard Hamiltonian through orbital integrals
// - Jordan–Wigner representation
#region Spin-orbital representation
// In the vocabulary of chemistry, the site index is also called the
// orbital index. Thus a complete description of a fermion index is
// as spin-orbital. Let us build an example.
// First, we assign an orbital index, say `5`.
var orbitalIdx = 5;
// Second, we assign a spin index. In addition to
// assigning them up and down integer indices, a good mnemonic is to
// label then with a `Spin` enumeration type, say `u` for up and `d`
// for down.
var spin = Spin.d;
// A spin-orbital index is then
var spinOrbital0 = new SpinOrbital(orbitalIdx, spin);
// We may also map the composite spin-orbital index into a single integer `x`
// using the default formula `x = 2 * orbitalIdx + spin`;
var spinOrbital0Int = spinOrbital0.ToInt();
// Other indexing schemes are possible. For example, we may use the formula
// `x = orbitalIdx + nOrbitals * spin`
var spinOrbital0HalfUpInt = spinOrbital0.ToInt(IndexConvention.HalfUp, 6);
// Let us print these spin-orbitals to verify they contain the
// expected information.
Console.WriteLine($"Spin-orbital representation:");
Console.WriteLine($"spinOrbital0: (Orbital, Spin) index: ({spinOrbital0.Orbital},{spinOrbital0.Spin}).");
Console.WriteLine($"spinOrbital0Int: (2 * Orbital + Spin) index: ({spinOrbital0Int}).");
Console.WriteLine($"spinOrbital0HalfUpInt: (Orbital + nOrbitals * Spin) index: ({spinOrbital0HalfUpInt}).");
Console.WriteLine($"");
#endregion
#region Hamiltonian term representation
// Each term in the Hamiltonian is then labeled by an ordered sequence of
// spin-orbital indices, and a coefficient. By default, normal-ordering is
// assumed, meaning that all creation operators are left of all annihilation
// operators. By default, the number of creation and annihilation operators
// are also assumed to be equal as chemistry Hamiltonian often conserve
// particle number.
// Let us represent the Hermitian fermion term 0.5 (a†ᵢₛ aᵢ₊₁ₛ + a†ᵢ₊₁ₛ aᵢₛ), where `i` is 5 and `s`
// is spin up. As mentioned, we require a coefficient
var coefficient = 0.5;
// We also require a sequence of spin-orbital indices.
var spinOrbitalIndices = new[] { (5, Spin.u), (6, Spin.u) };
// We then convert each element to the `SpinOrbital` type, for instance through
var spinOrbitals0 = spinOrbitalIndices.Select(arrayElement => new SpinOrbital(arrayElement));
// Or for instance through
var spinOrbitals1 = new[] { (1, 0), (1, 1), (1, 1), (1, 0) }.ToSpinOrbitals();
// These indices may be converted into a list of integers
var spinOrbitals1Int = spinOrbitals1.ToInts();
// Alternatively, one may directly create a list of integer indices for the fermion terms.
var fermionInts = new[] { 10, 12 };
Console.WriteLine($"spinOrbital0.ToInts() as integers = fermionInts: " +
$"{spinOrbitals0.ToInts()}) = " +
$"{fermionInts}");
// A fermion Hamiltonian term is then of the form
var fermionTerm0 = new HermitianFermionTerm(spinOrbitals0.ToInts());
var fermionTerm1 = new HermitianFermionTerm(spinOrbitals1.ToInts());
var fermionTerm2 = new HermitianFermionTerm(new[] { (2, 0), (2, 1), (2, 1), (2, 0) }.ToSpinOrbitals().ToInts());
// Let us print these FermionTerms to see what they contain.
// Note that Conjugation is an array describing the sequence of creation and annihilation operators.;
Console.WriteLine($"Hamiltonian term representation:");
Console.WriteLine($"fermionTerm0: {fermionTerm0}");
Console.WriteLine($"fermionTerm1: {fermionTerm1}");
Console.WriteLine($"fermionTerm2: {fermionTerm2}");
Console.WriteLine($"");
// As Hamiltonians are Hermitian operators, every non-Hermitian
// term is assumed to added to its Hermitian conjugate. Thus
// any sequence of spinOrbitalIndices is treated as equivalent to
// the same sequence in reverse order. To illustrate,
var fermionTerm0Reversed = new HermitianFermionTerm(spinOrbitals0.ToInts().Reverse());//, coefficient);
Console.WriteLine($"Hermitian fermion term with reversed spin-orbital indices:");
Console.WriteLine($"Original term : {fermionTerm0}");
Console.WriteLine($"Reversed spin-orbital sequence term: {fermionTerm0Reversed}");
Console.WriteLine($"");
#endregion
#region Hamiltonian representation
// A Hamiltonian is a sum of fermion terms, which we represent through
var hamiltonian = new FermionHamiltonian();
// The library provides a number of helpful methods for adding terms to this
// Hamiltonian. Below, we choose a straightforward approach where we manually
// add terms one by one. For instance,
hamiltonian.Add(fermionTerm0, coefficient);
hamiltonian.Add(fermionTerm0Reversed, 0.123);
hamiltonian.Add(fermionTerm1, 0.123);
hamiltonian.Add(fermionTerm2, 0.456);
// Note that we have two repeated terms -- their coefficients are automatically
// added. This also sorts the terms in a certain canonical order.
// Let us print this Hamiltonian.
Console.WriteLine($"Hamiltonian representation:");
Console.WriteLine(hamiltonian);
#endregion
#region Building the Hubbard Hamiltonian
// We are now ready to construct the Hubbard Hamiltonian. Let us define
// a few relevant terms.
var t = 0.5; // hopping coefficient
var u = 1.0; // repulsion coefficient
var nSites = 5; // number of sites;
// First, initialize a new Hamiltonian.
var hubbardHamiltonian = new FermionHamiltonian();
// Second, add terms to the Hamiltonian.
for (int i = 0; i < nSites; i++)
{
foreach (Spin s in Enum.GetValues(typeof(Spin)))
{
// Hopping Terms
var hoppingTerm = new HermitianFermionTerm(new[] { (i, s), ((i + 1) % nSites, s) }.ToSpinOrbitals().ToInts());
hubbardHamiltonian.Add(hoppingTerm, -1.0 * t);
}
// Repulsion terms
var repulsionTerm = new HermitianFermionTerm(new[] { (i, Spin.u), (i, Spin.d), (i, Spin.d), (i, Spin.u) }.ToSpinOrbitals().ToInts());
hubbardHamiltonian.Add(repulsionTerm, u);
}
// Let us print the Hamiltonian so far.
Console.WriteLine($"Hubbard Hamiltonian representation:");
Console.WriteLine(hubbardHamiltonian);
#endregion
#region Building the Hubbard Hamiltonian through orbital integrals
// Rather than explicitly specifying the spin indices of each fermion term,
// the Hubbard Hamiltonian may be constructed even more compactly.
// This is through the use of orbital integrals, which represents the
// overlap integral between spatial wave-functions, or orbitals. For instance,
// a one-electron integral has two spatial indices, and a
// two-electron has four spatial indices.
var oneElectronOrbitalIndices = new[] { 0, 1 };
var oneElectronCoefficient = 1.0;
var oneElectronIntegral = new OrbitalIntegral(oneElectronOrbitalIndices, oneElectronCoefficient);
var twoElectronOrbitalIndices = new[] { 0, 1, 2, 3 };
var twoElectronCoefficient = 0.123;
var twoElectronIntegral = new OrbitalIntegral(twoElectronOrbitalIndices, twoElectronCoefficient);
// Let us print the orbital integrals.
Console.WriteLine($"Building the Hubbard Hamiltonian through orbital integrals:");
Console.WriteLine($"(Orbital Indices, Coefficient): {oneElectronIntegral}");
Console.WriteLine($"(Orbital Indices, Coefficient): {twoElectronIntegral}");
// Using the following symmetries, the coefficients of various orbital integrals
// related by permutation of their orbital indices must be identical.
// - Orbitals are assumed to be real.
// - Electrons are indistinguishable.
// We may enumerate over all these symmetries using the following method.
var twoElectronOrbitalIntegrals = twoElectronIntegral.EnumerateOrbitalSymmetries();
// Let us print the result.
Console.WriteLine($"Two-electron orbital integrals with the same coefficient:");
Console.WriteLine($"Original orbital integral:\n\t{twoElectronIntegral}");
Console.WriteLine($"Enumerated orbital integrals:\n\t{string.Join<OrbitalIntegral>("\n\t", twoElectronOrbitalIntegrals)}");
// This allows us to compactly construct the Hubbard Hamiltonian as follows.
// First, we create an orbital integral representation of the Hamiltonian
var orbitalIntegralHamiltonian = new OrbitalIntegralHamiltonian();
foreach (var i in Enumerable.Range(0, nSites))
{
orbitalIntegralHamiltonian.Add(new OrbitalIntegral(new[] { i, (i + 1) % nSites }, -0.5 * t));
orbitalIntegralHamiltonian.Add(new OrbitalIntegral(new[] { i, i, i, i }, u));
}
// Second, we use convenience methods of the orbital integral Hamiltonian
// to create a fermion Hamiltonian, using the spin-orbital to integer
//indexing convention `x = 2 * orbitalIdx + spin`;
FermionHamiltonian anotherHubbardHamiltonian = orbitalIntegralHamiltonian.ToFermionHamiltonian(IndexConvention.UpDown);
// Let us verify that both Hamiltonians are identical
Console.WriteLine($"Hubbard Hamiltonian constructed using orbital integrals");
Console.WriteLine(anotherHubbardHamiltonian);
#endregion
#region Jordan–Wigner representation
// The Jordan–Wigner encoding converts the fermion Hamiltonian,
// expressed in terms of Fermionic operators, to a qubit Hamiltonian,
// expressed in terms of Pauli matrices. This is an essential step
// for simulating our constructed Hamiltonians on a qubit quantum
// computer.
var jordanWignerEncoding = hubbardHamiltonian.ToPauliHamiltonian(Paulis.QubitEncoding.JordanWigner);
// Let us print this Hamiltonian
Console.WriteLine($"Hubbard Hamiltonian in Jordan–Wigner representation");
Console.WriteLine(jordanWignerEncoding);
Console.WriteLine("Press Enter to continue...");
if (System.Diagnostics.Debugger.IsAttached)
{
Console.ReadLine();
}
#endregion
}
}
}