-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_math.py
696 lines (620 loc) · 23.1 KB
/
generate_math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
import math, dataclasses, re, itertools, sys, typing, functools
HAVE_FIXP = False
HEADER = f"""
#include "pshine/util.h"
#include <stddef.h>{'\n#include <stdint.h>' if HAVE_FIXP else ''}
#include <string.h>
#include <math.h>
#define MATH_FN_ static inline
#define MATH_FAST_FN_ MATH_FN_
""".strip()
CONSTS = f"""
static const double π = {math.pi};
static const double euler = {math.e};
static const double τ = {math.tau};
""".strip()
Q = (43,20)
Qn = f"Q{Q[0]}{Q[1]}"
FIXP_IMPL = R"""
#define QFP_FRAC `qs
typedef union { int64_t i; uint64_t u; } `T;
// https://stackoverflow.com/a/31662911/19776006
MATH_FAST_FN_ void fixp__umul64wide_(uint64_t a, uint64_t b, uint64_t *hi, uint64_t *lo) {
uint64_t a_lo = (uint64_t)(uint32_t)a;
uint64_t a_hi = a >> 32;
uint64_t b_lo = (uint64_t)(uint32_t)b;
uint64_t b_hi = b >> 32;
uint64_t p0 = a_lo * b_lo;
uint64_t p1 = a_lo * b_hi;
uint64_t p2 = a_hi * b_lo;
uint64_t p3 = a_hi * b_hi;
uint32_t cy = (uint32_t)(((p0 >> 32) + (uint32_t)p1 + (uint32_t)p2) >> 32);
*lo = p0 + (p1 << 32) + (p2 << 32);
*hi = p3 + (p1 >> 32) + (p2 >> 32) + cy;
}
MATH_FAST_FN_ void fixp__mul64wide_(int64_t a, int64_t b, int64_t *hi, int64_t *lo) {
fixp__umul64wide_((uint64_t)a, (uint64_t)b, (uint64_t *)hi, (uint64_t *)lo);
if (a < 0LL) *hi -= b;
if (b < 0LL) *hi -= a;
}
MATH_FAST_FN_ int64_t fixp__mul_(int64_t a, int64_t b) {
int64_t res;
int64_t hi, lo;
fixp__mul64wide_(a, b, &hi, &lo);
res = ((uint64_t)hi << (64 - QFP_FRAC)) | ((uint64_t)lo >> QFP_FRAC);
return res;
}
MATH_FAST_FN_ `T `$add(`T a, `T b) { return (`T){ a.i + b.i }; }
MATH_FAST_FN_ `T `$sub(`T a, `T b) { return (`T){ a.i - b.i }; }
MATH_FAST_FN_ `T `$mul(`T a, `T b) { return (`T){ fixp__mul_(a.i, b.i) }; }
MATH_FAST_FN_ `T `$div(`T a, `T b) { return (`T){ (a.i / b.i) << QFP_FRAC }; }
MATH_FAST_FN_ double double_`T(`T x) { return (double)x.i / (double)(1 << QFP_FRAC); }
MATH_FAST_FN_ float float_`T(`T x) { return (float)x.i / (float)(1 << QFP_FRAC); }
MATH_FAST_FN_ `T `T_double(double x) { return (`T){ (x * (1 << QFP_FRAC)) }; }
MATH_FAST_FN_ `T `T_float(float x) { return (`T){ (x * (1 << QFP_FRAC)) }; }
MATH_FAST_FN_ `T `$neg(`T x) { return (`T){ -x.i }; }
MATH_FAST_FN_ bool `$lt(`T a, `T b) { return a.i < b.i; }
MATH_FAST_FN_ bool `$gt(`T a, `T b) { return a.i > b.i; }
MATH_FAST_FN_ bool `$le(`T a, `T b) { return a.i <= b.i; }
MATH_FAST_FN_ bool `$ge(`T a, `T b) { return a.i >= b.i; }
MATH_FAST_FN_ `T `$fabs(`T x) { return (`T){ .u = x.u & ~(1UL << 63) }; }
MATH_FAST_FN_ `T `$sqrt(`T x) { return `T_double(sqrt(double_`T(x))); }
MATH_FAST_FN_ `T `$tan(`T x) { return `T_double(tan(double_`T(x))); }
MATH_FAST_FN_ `T `$cos(`T x) { return `T_double(cos(double_`T(x))); }
MATH_FAST_FN_ `T `$sin(`T x) { return `T_double(sin(double_`T(x))); }
""".strip()
TEMPLATES: list[tuple[set[str], str, str]] = [
({"v"}, "{name} type", R"""
typedef union {
struct { `B `[xyzw,$Dim,0,$At,$CutEnd,$SeqC]; };
struct { `B `[rgba,$Dim,0,$At,$CutEnd,$SeqC]; };
`B vs[`[$Dim,0,$At,$Str]];
} `T;
MATH_FN_ `T `T`[xyzw,$Dim,0,$At,$CutEnd,$SeqJ](`[xyzw,$Dim,0,$At,$CutEnd,`B {0},$Map,$SeqC]) { return `[xyzw,$Dim,0,$At,$CutEnd,$ctor]; }
MATH_FN_ `T `T`[rgba,$Dim,0,$At,$CutEnd,$SeqJ](`[rgba,$Dim,0,$At,$CutEnd,`B {0},$Map,$SeqC]) { return `[rgba,$Dim,0,$At,$CutEnd,$ctor]; }
MATH_FN_ `T `$vs(const `B vs[`[$Dim,0,$At,$Str]]) { return `[vs{0},$Dim,,$Dims,$ctor]; }
MATH_FN_ `T `$v(`B v) { return `[v,$Dim,,$Dims,$ctor]; }
MATH_FN_ `T `$v0() { return `$v(`[$bZero]); }
""".strip()),
({"cast"}, "{nameb} to {namea}", R"""
MATH_FN_ `Ta `Ta_`Tb(`Tb x) { return `[`[x{0},Tbb,$V,Tba,$V,$cast\],$ElWise,$ctor]; }
""".strip()),
({"v4"}, "{name} type", R"""
MATH_FN_ `T `T.xyz3w(`B3 xyz, `B w) { return `[xyz,xyz.{0},$Map,w,$SList,$Add,$ctor]; }
""".strip()),
({"v"}, "{name} operations", R"""
MATH_FN_ `T `$neg(`T v) { return `[`[v{0},$Tb,neg,$Gunop\],$ElWise,$ctor]; }
MATH_FN_ `T `$add(`T a, `T b) { return `[`[a{0},b{0},$Tb,add,$Gbinop\],$ElWise,$ctor]; }
MATH_FN_ `T `$sub(`T a, `T b) { return `[`[a{0},b{0},$Tb,sub,$Gbinop\],$ElWise,$ctor]; }
MATH_FN_ `T `$mul(`T v, `B s) { return `[`[v{0},s,$Tb,mul,$Gbinop\],$ElWise,$ctor]; }
MATH_FN_ `T `$div(`T v, `B s) { return `[`[v{0},s,$Tb,div,$Gbinop\],$ElWise,$ctor]; }
MATH_FN_ `B `$dot(`T a, `T b) { return `[`[a{0},b{0},$Tb,mul,$Gbinop\],$ElWise,`[{0},{1},$Tb,add,$Gbinop\],$Reduce]; }
MATH_FN_ `B `$mag2(`T v) { return `[v,v,$dot]; }
MATH_FN_ `B `$mag(`T v) { return `[v,$mag2,$sqrt]; }
MATH_FN_ `T `$norm(`T v) {
`B m = `[v,$mag2];
if (`[m,$fabs,$eps,$Tb,le,$Gbinop]) return (`T){};
return `[v,m,$sqrt,$div];
}
""".strip()),
({"v3"}, "{base} vector cross product", R"""
MATH_FN_ `T `$cross(`T a, `T b) {
return `T.xyz(
`[a.y,b.z,$Tb,mul,$Gbinop,a.z,b.y,$Tb,mul,$Gbinop,$Tb,sub,$Gbinop],
`[a.z,b.x,$Tb,mul,$Gbinop,a.x,b.z,$Tb,mul,$Gbinop,$Tb,sub,$Gbinop],
`[a.x,b.y,$Tb,mul,$Gbinop,a.y,b.x,$Tb,mul,$Gbinop,$Tb,sub,$Gbinop]
);
}
""".strip()),
({"s", "v"}, "{name} lerp, min, max, clamp", R"""
MATH_FN_ `T `$min(`T a, `T b) { return `[`[a{0},b{0},$Tb,lt,$Gbinop\] ? a{0} : b{0},$ElWise,$ctor]; }
MATH_FN_ `T `$max(`T a, `T b) { return `[`[a{0},b{0},$Tb,gt,$Gbinop\] ? a{0} : b{0},$ElWise,$ctor]; }
MATH_FN_ `T `$clamp(`T x, `T a, `T b) { return `[x,a,$max,b,$min]; }
MATH_FN_ `T `$lerp(`T a, `T b, `B t) { return `[a,$bOne,t,$Tb,sub,$Gbinop,$muls,b,t,$muls,$add]; }
""".strip()),
({"m"}, "{name} matrix", R"""
typedef union {
struct { `B vvs[`[$Dim,0,$At,$Dim,1,$At,$Mul,$Str]]; };
struct { `B vs[`[$Dim,0,$At,$Str]][`[$Dim,1,$At,$Str]]; };
struct { `B`[$Dim,0,$At,$Str] v`[$Dim,0,$At,$Str]s[`[$Dim,1,$At,$Str]]; };
} `T;
""".strip()),
({"m2x2"}, "{base} 2x2 square matrix operations", R"""
MATH_FN_ `B2 `$mulv(const `T *m, `B2 v) {
return `B2xy(
m->vs[0][0] * v.x + m->vs[1][0] * v.y,
m->vs[0][1] * v.x + m->vs[1][1] * v.y
);
}
"""),
({"m3x3"}, "{base} 3x3 square matrix operations", R"""
MATH_FN_ `B3 `$mulv(const `T *m, `B3 v) {
return `B3xyz(
m->vs[0][0] * v.x + m->vs[1][0] * v.y + m->vs[2][0] * v.z,
m->vs[0][1] * v.x + m->vs[1][1] * v.y + m->vs[2][1] * v.z,
m->vs[0][2] * v.x + m->vs[1][2] * v.y + m->vs[2][2] * v.z
);
}
"""),
({"m4x4"}, "{base} 4x4 square matrix operations", R"""
MATH_FN_ `B4 `$mulv(const `T *m, `B4 v) {
return `B4xyzw(
m->vs[0][0] * v.x + m->vs[1][0] * v.y + m->vs[2][0] * v.z + m->vs[3][0] * v.w,
m->vs[0][1] * v.x + m->vs[1][1] * v.y + m->vs[2][1] * v.z + m->vs[3][1] * v.w,
m->vs[0][2] * v.x + m->vs[1][2] * v.y + m->vs[2][2] * v.z + m->vs[3][2] * v.w,
m->vs[0][3] * v.x + m->vs[1][3] * v.y + m->vs[2][3] * v.z + m->vs[3][3] * v.w
);
}
"""),
({"mS"}, "{base} square matrix operations", R"""
MATH_FN_ void set`$iden(`T *m) {
memset(m->vs, 0, sizeof(m->vs));
`[$Dim,0,$At,m->vs[{0}\][{0}\] = 1.0,$UpTo,$SeqS];
}
MATH_FN_ void `$mul(`T *m1, const `T *m2) {
for (size_t i = 0; i < `[$Dim,0,$At,$Str]; ++i) {
m1->v`[$Dim,0,$At,$Str]s[i] = `$mulv(m2, m1->v`[$Dim,0,$At,$Str]s[i]);
}
//for (size_t i = 0; i < `[$Dim,0,$At,$Str]; ++i) {
// for (size_t j = 0; j < `[$Dim,0,$At,$Str]; ++j) {
// res->vs[j][i] = 0;
// for (size_t k = 0; k < `[$Dim,0,$At,$Str]; ++k)
// res->vs[j][i] += m1->vs[k][i] * m2->vs[j][k];
// }
//}
}
"""),
# TODO: matrix multiplication
({"m4x4d", "m4x4f"}, "{base} matrix operations", R"""
MATH_FN_ void `B3x3axisangle(`B3x3 *m, `B3 axis, `B angle) {
memset(m->vs, 0, sizeof(m->vs));
`B a = angle, c = `[a,$cos], s = `[a,$sin];
axis = `B3norm(axis);
`B3 t = `B3mul(axis, 1 - c);
`B r00 = c + t.x * axis.x;
`B r01 = t.x * axis.y + s * axis.z;
`B r02 = t.x * axis.z - s * axis.y;
`B r10 = t.y * axis.x - s * axis.z;
`B r11 = c + t.y * axis.y;
`B r12 = t.y * axis.z + s * axis.x;
`B r20 = t.z * axis.x + s * axis.y;
`B r21 = t.z * axis.y - s * axis.x;
`B r22 = c + t.z * axis.z;
`B3x3 r;
r.v3s[0] = `B3add(`B3add(`B3mul(m->v3s[0], r00), `B3mul(m->v3s[1], r01)), `B3mul(m->v3s[2], r02));
r.v3s[1] = `B3add(`B3add(`B3mul(m->v3s[0], r10), `B3mul(m->v3s[1], r11)), `B3mul(m->v3s[2], r12));
r.v3s[2] = `B3add(`B3add(`B3mul(m->v3s[0], r20), `B3mul(m->v3s[1], r21)), `B3mul(m->v3s[2], r22));
*m = r;
}
MATH_FN_ void set`B3x3rotation(`B3x3 *m, `B yaw, `B pitch, `B roll) {
memset(m->vs, 0, sizeof(m->vs));
`B α = yaw, β = pitch, γ = roll;
`B sα = `[α,$sin], sβ = `[β,$sin], sγ = `[γ,$sin];
`B cα = `[α,$cos], cβ = `[β,$cos], cγ = `[γ,$cos];
m->vs[0][0] = cα * cβ;
m->vs[1][0] = sα * cβ;
m->vs[2][0] = -sβ;
m->vs[0][1] = cα * sβ * sγ - sα * cγ;
m->vs[1][1] = sα * sβ * sγ + cα * cγ;
m->vs[2][1] = cβ * sγ;
m->vs[0][2] = cα * sβ * cγ + sα * sγ;
m->vs[1][2] = sα * sβ * cγ - cα * sγ;
m->vs[2][2] = cβ * cγ;
}
MATH_FN_ void `B4x4trans(`B4x4 *m, `B3 d) {
`B r[4] = {};
`[r{0} += m->vs[0\]{0} * d.x,4,,$Dims,$SeqS];
`[r{0} += m->vs[1\]{0} * d.y,4,,$Dims,$SeqS];
`[r{0} += m->vs[2\]{0} * d.z,4,,$Dims,$SeqS];
`[m->vs[3\]{0} += r{0},4,,$Dims,$SeqS];
}
MATH_FN_ void `B4x4scale(`B4x4 *m, `B3 s) {
m->vs[0][0] *= s.x;
m->vs[0][1] *= s.y;
m->vs[0][2] *= s.z;
m->vs[1][0] *= s.x;
m->vs[1][1] *= s.y;
m->vs[1][2] *= s.z;
m->vs[2][0] *= s.x;
m->vs[2][1] *= s.y;
m->vs[2][2] *= s.z;
m->vs[3][0] *= s.x;
m->vs[3][1] *= s.y;
m->vs[3][2] *= s.z;
}
struct `B4x4persp_info {
`B2 plane;
`B znear;
};
MATH_FN_ struct `B4x4persp_info set`B4x4persp_rhoz(`B4x4 *m, `B fov, `B aspect, `B znear, `B zfar) {
// https://gist.github.com/pezcode/1609b61a1eedd207ec8c5acf6f94f53a
memset(m->vs, 0, sizeof(m->vs));
struct `B4x4persp_info info;
`B t = `[fov * 0.5f * π / 180.0f,$tan];
info.plane.y = t * znear;
info.plane.x = info.plane.y * aspect;
info.znear = znear;
`B k = znear / (znear - zfar);
`B g = 1.0 / t;
m->vs[0][0] = g / aspect;
m->vs[1][1] = -g;
m->vs[2][2] = -k;
m->vs[2][3] = 1.0;
m->vs[3][2] = -znear * k;
return info;
}
MATH_FN_ struct `B4x4persp_info set`B4x4persp_rhozi(`B4x4 *m, `B fov, `B aspect, `B znear) {
// http://www.songho.ca/opengl/gl_projectionmatrix.html#perspective
// https://computergraphics.stackexchange.com/a/12453
// https://discourse.nphysics.org/t/reversed-z-and-infinite-zfar-in-projections/341/2
memset(m->vs, 0, sizeof(m->vs));
struct `B4x4persp_info info;
`B t = `[fov * 0.5f * π / 180.0f,$tan];
info.plane.y = t * znear;
info.plane.x = info.plane.y * aspect;
info.znear = znear;
`B g = 1.0f / t;
m->vs[0][0] = g / aspect;
m->vs[1][1] = -g;
m->vs[3][2] = znear;
m->vs[2][3] = 1.0f;
return info;
}
MATH_FN_ struct `B4x4persp_info set`B4x4persp(`B4x4 *m, `B fov, `B aspect, `B znear) {
// return set`B4x4persp_rhoz(m, fov, aspect, znear, (`B)1000.0);
return set`B4x4persp_rhozi(m, fov, aspect, znear);
}
MATH_FN_ void set`B4x4lookat(`B4x4 *m, `B3 eye, `B3 center, `B3 up) {
memset(m->vs, 0, sizeof(m->vs));
`B3 f = `B3norm(`B3sub(center, eye));
`B3 s = `B3norm(`B3cross(up, f));
`B3 u = `B3cross(f, s);
m->vs[0][0] = s.x;
m->vs[1][0] = s.y;
m->vs[2][0] = s.z;
m->vs[0][1] = u.x;
m->vs[1][1] = u.y;
m->vs[2][1] = u.z;
m->vs[0][2] = f.x;
m->vs[1][2] = f.y;
m->vs[2][2] = f.z;
m->vs[3][0] = -`B3dot(s, eye);
m->vs[3][1] = -`B3dot(u, eye);
m->vs[3][2] = -`B3dot(f, eye);
m->vs[3][3] = 1.0f;
}
""")
]
class Ty(typing.Protocol):
dim: tuple[int, ...]
is_builtin: bool
op_map: dict[str, str]
builtin_ops: dict[str, str]
def fmt(self, s: str) -> str: ...
def ctor(self, s: str) -> str: ...
def cast_to(self, ty_to: 'Ty', s: str) -> str | None: ...
def cast_from(self, ty_from: 'Ty', s: str) -> str | None: ...
@property
def name(self) -> str: ...
@property
def epsilon(self) -> str: ...
@property
def zero(self) -> str: ...
@property
def one(self) -> str: ...
@dataclasses.dataclass(frozen=True)
class BaseTy(Ty):
dim: tuple[int, ...]
_name: str
is_builtin: bool
op_map: dict[str, str]
builtin_ops: dict[str, str]
ctor_fmt: str = "({name}){{ {0} }}"
cast_to_fmt: str = "({to})({0})"
cast_from_fmt: str | None = None
name_fmt: str = "{0}{name0}"
epsilon_fmt: str = "??eps"
zero_fmt: str = "0"
one_fmt: str = "1"
@property
def name(self) -> str:
return self._name
def fmt(self, s: str):
return self.name_fmt.format(s, name0=self._name[0], name=self._name)
def ctor(self, s: str):
return self.ctor_fmt.format(s, name=self.name)
def cast_to(self, ty_to: 'Ty', s: str) -> str | None:
return self.cast_to_fmt.format(s, name=self.name, to=ty_to.name)
def cast_from(self, ty_from: 'Ty', s: str) -> str | None:
return self.cast_from_fmt.format(s, name=self.name, **{"from": ty_from.name}) \
if self.cast_from_fmt is not None else ty_from.cast_to(self, s)
@property
def epsilon(self) -> str:
return self.epsilon_fmt.format(name=self.name)
@property
def zero(self) -> str:
return self.zero_fmt.format(name=self.name)
@property
def one(self) -> str:
return self.one_fmt.format(name=self.name)
@dataclasses.dataclass(frozen=True)
class CompositeTy(Ty):
dim: tuple[int, ...]
base_ty: 'Ty'
is_builtin: bool
op_map: dict[str, str]
builtin_ops: dict[str, str]
ctor_fmt: str = "({name}){{ {0} }}"
cast_to_fmt: str = "{to}_{name}({0})"
cast_from_fmt: str = "{name}_{from}({0})"
@property
def epsilon(self) -> str:
return self.base_ty.epsilon
@property
def name(self) -> str:
if self.dim == (1,): return self.base_ty.name
return f"{self.base_ty.name}" + "x".join(map(str, self.dim))
def fmt(self, s: str):
if self.dim == (1,): return f"{s}{self.base_ty.name[0]}"
return f"{self.name}{s}"
def ctor(self, s: str):
return self.ctor_fmt.format(s, name=self.name)
def cast_to(self, ty_to: 'Ty', s: str) -> str | None:
return self.cast_to_fmt.format(s, name=self.name, to=ty_to.name)
def cast_from(self, ty_from: 'Ty', s: str) -> str | None:
return self.cast_from_fmt.format(s, name=self.name, **{"from": ty_from.name}) \
if self.cast_from_fmt is not None else ty_from.cast_to(self, s)
@property
def zero(self) -> str:
return f"{self.name}v({self.base_ty.zero})"
@property
def one(self) -> str:
return f"{self.name}v({self.base_ty.one})"
PATTERN = re.compile(r"\`(\$?[a-zA-Z]+\.?|\[(|\\.|[^\]])*\])")
SPLIT_PATTERN = re.compile(r",\s*(?![^[\]]*\])")
def instantiate(ty: Ty, source: str, vars: dict[str, typing.Any]):
def get_var(name: str) -> str:
if name in vars: return vars[name]
raise NameError(f"unknown var: {name}")
def fn_gbinop(ty: Ty, op: str):
if op in ty.op_map: op = ty.op_map[op]
if op in ty.builtin_ops:
return lambda lhs, rhs: f"{lhs} {ty.builtin_ops[op]} {rhs}"
return lambda lhs, rhs: f"{ty.fmt(op)}({lhs}, {rhs})"
def fn_gunop(ty: Ty, op: str):
if op in ty.op_map: op = ty.op_map[op]
if op in ty.builtin_ops:
return lambda v: f"{ty.builtin_ops[op]} {v}"
return lambda v: f"{ty.fmt(op)}({v})"
def fn_dims(s: str, ds: tuple[int, ...] | str, prefix=""):
if isinstance(ds, str):
ds = tuple(map(int, ds.split(";")))
if ds == (1,): return [s.format("")]
return [s.format(prefix + "".join(f"[{v}]" for v in vs)) for vs in itertools.product(*map(range, ds))]
def fn_cmath(name: str):
ty2 = ty.base_ty if isinstance(ty, CompositeTy) else ty
if ty2.name == "float": name = f"{name}f"
elif ty2.name == "double": name = f"{name}"
else: name = ty2.fmt(name)
return lambda x: f"{name}({x})"
# these are the exceptions, everything else is assumed to be a binary operator
FN_MAP = {
"ElWise": (1, lambda s: fn_dims(s, ty.dim, ".vs")),
"Dims": (3, fn_dims),
"ctor": (1, lambda s: ty.ctor(", ".join(s))),
"CutEnd": (2, lambda l, a: l[:int(a)]),
"CutStart": (2, lambda l, a: l[int(a):]),
"Cut": (3, lambda l, a, b: l[int(a):int(b)]),
"SeqS": (1, lambda s: "; ".join(s)),
"SeqC": (1, lambda s: ", ".join(s)),
"SeqP": (1, lambda s: " + ".join(s)),
"SeqJ": (1, lambda s: "".join(s)),
"SList": (1, lambda s: [s]),
"EList": (1, lambda s: []),
"Int": (1, lambda s: int(s)),
"Str": (1, lambda x: str(x)),
"Dim": (0, lambda: ty.dim),
"At": (2, lambda l, s: l[int(s)]),
"Map": (2, lambda l, s: [s.format(e) for e in l]),
"Reduce": (2, lambda l, s: functools.reduce(lambda a, b: s.format(a, b), l)),
"UpTo": (2, lambda n, s: [s.format(i) for i in range(n)]),
"Add": (2, lambda a, b: a + b),
"Sub": (2, lambda a, b: a - b),
"Mul": (2, lambda a, b: a * b),
"Div": (2, lambda a, b: a / b),
"Tb": (0, lambda: ty.base_ty if isinstance(ty, CompositeTy) else ty),
"Tt": (0, lambda: ty),
"V": (1, lambda name: vars[name]),
"MkVt": (2, lambda n, ty: CompositeTy((int(n),), ty, False, {"muls":"mul","mul":"??"}, {}, ctor_fmt="({name}){{{{ {} }}}}")),
"TName": (1, lambda ty: ty.name),
"TDim": (1, lambda ty: ty.dim),
"TCtor": (2, lambda s, ty: ty.ctor(", ".join(s))),
"Gbinop": (4, lambda a, b, ty, op: fn_gbinop(ty, op)(a, b)),
"Gunop": (3, lambda a, ty, op: fn_gunop(ty, op)(a)),
"gZero": (1, lambda ty: ty.zero),
"gOne": (1, lambda ty: ty.one),
"bZero": (0, lambda: ty.base_ty.zero if isinstance(ty, CompositeTy) else ty.zero),
"bOne": (0, lambda: ty.base_ty.one if isinstance(ty, CompositeTy) else ty.one),
"cast": (3, lambda s, tyfrom, tyto: tyto.cast_from(tyfrom, s)),
"eps": (0, lambda: ty.epsilon),
"neg": (1, fn_gunop(ty, "neg")),
"mag2": (1, fn_gunop(ty, "mag2")),
"mag": (1, fn_gunop(ty, "mag")),
"norm": (1, fn_gunop(ty, "norm")),
"gneg": (2, lambda x, ty: fn_gunop(ty, "neg")(x)),
"gmag2": (2, lambda x, ty: fn_gunop(ty, "mag2")(x)),
"gmag": (2, lambda x, ty: fn_gunop(ty, "mag")(x)),
"gnorm": (2, lambda x, ty: fn_gunop(ty, "norm")(x)),
"sqrt": (1, fn_cmath("sqrt")),
"fabs": (1, fn_cmath("fabs")),
"fmod": (1, fn_cmath("fmod")),
"tan": (1, fn_cmath("tan")),
"cos": (1, fn_cmath("cos")),
"sin": (1, fn_cmath("sin")),
}
def repl(m: re.Match) -> str:
s = m.group(1).replace("\\]", "]")
if s[0] == "[":
stack = []
vs = SPLIT_PATTERN.split(s[1:-1])
for v in vs:
v = v.strip()
if len(v) > 0 and v[0] == '$':
name = v[1:]
if name in FN_MAP:
narg = FN_MAP[name][0]
fn = FN_MAP[name][1]
else:
narg = 2
fn = fn_gbinop(ty, name)
if len(stack) < narg:
raise Exception(f"stack underflow for {name}, expected {narg} but only {len(stack)} available.")
stack.append(fn(*reversed([stack.pop() for _ in range(narg)])))
else:
stack.append(instantiate(ty, v, vars))
r = stack.pop()
assert isinstance(r, str)
return r
elif s[0] == '$':
if s[-1] == '.': s = s[:-1]
r = ty.fmt(s[1:])
assert isinstance(r, str)
return r
else:
if s[-1] == '.': s = s[:-1]
r = get_var(s)
assert isinstance(r, str)
return r
return PATTERN.sub(repl, source)
BASE_BUILTIN_OPS = {
"neg": "-",
"add": "+",
"sub": "-",
"muls": "*",
"mul": "*",
"dot": "*",
"div": "/",
"lt": "<",
"gt": ">",
"le": "<=",
"ge": ">=",
"eq": "==",
"ne": "!=",
}
class Generator:
BASE_TYPES = (
BaseTy((1,), "float", True, {}, BASE_BUILTIN_OPS, ctor_fmt="{}", epsilon_fmt="0.000001f"),
BaseTy((1,), "double", True, {}, BASE_BUILTIN_OPS, ctor_fmt="{}", epsilon_fmt="0.000000001"),
) + ((BaseTy((1,), "Qfp", False, { "muls": "mul" }, {},
ctor_fmt="{}",
cast_to_fmt="{to}_{name}({0})",
cast_from_fmt="{name}_{from}({0})",
epsilon_fmt="({name}){{2}}",
name_fmt="{}{name}",
zero_fmt="({name}){{0}}",
one_fmt="({name}){{1}}",
),) if HAVE_FIXP else ())
BASE_DIMS = (2, 3, 4)
def __init__(self, templates: list[tuple[set[str], str, str]], fout: typing.TextIO):
self.templates = templates
self.fout = fout
def _tags(self, fmt: str, *fields: tuple[str, ...] | str) -> set[str]:
fs = tuple((f, "") if isinstance(f, str) else f for f in fields)
s: set[str] = set()
for ts in itertools.product(*fs):
s.add(fmt.format(*ts))
return s
def _generate_for(self, tags: set[str], ty: Ty):
for ttags, comment, source in self.templates:
if not ttags.isdisjoint(tags):
print(f"\n// {comment.format(
name=ty.name,
base=ty.base_ty.name if isinstance(ty, CompositeTy) else ty.name,
)}", file=self.fout)
print(instantiate(ty, source, {
"T": ty.name,
"B": ty.base_ty.name if isinstance(ty, CompositeTy) else ty.name,
}), file=self.fout)
def _generate_for2(self, tags: set[str], tya: Ty, tyb: Ty):
# print("gen for two", tags)
for ttags, comment, source in self.templates:
if not ttags.isdisjoint(tags):
print(f"\n// {comment.format(
namea=tya.name,
basea=tya.base_ty.name if isinstance(tya, CompositeTy) else tya.name,
nameb=tyb.name,
baseb=tyb.base_ty.name if isinstance(tyb, CompositeTy) else tyb.name,
)}", file=self.fout)
print(instantiate(tya, source, {
"Tta": tya,
"Ttb": tya,
"Tba": tya.base_ty if isinstance(tya, CompositeTy) else tya,
"Tbb": tyb.base_ty if isinstance(tyb, CompositeTy) else tyb,
"Ta": tya.name,
"Ba": tya.base_ty.name if isinstance(tya, CompositeTy) else tya.name,
"Tb": tyb.name,
"Bb": tyb.base_ty.name if isinstance(tyb, CompositeTy) else tyb.name,
}), file=self.fout)
def _generate_scalar(self, ty: Ty):
self._generate_for({"s"}, ty)
def _generate_vector(self, base_ty: Ty):
ctor = "({name}){{{{ {} }}}}"
op_map = { "muls": "mul", "mul": "?" }
for dim in self.BASE_DIMS:
ty = CompositeTy((dim,), base_ty, False, op_map, {}, ctor)
self._generate_for(self._tags("v{}{}", str(dim), ty.base_ty.name[0]), ty)
def _generate_vector_casts(self, base_tya: Ty, base_tyb: Ty):
ctor = "({name}){{{{ {} }}}}"
op_map = { "muls": "mul", "mul": "?" }
for dim in self.BASE_DIMS:
tya = CompositeTy((dim,), base_tya, False, op_map, {}, ctor)
tyb = CompositeTy((dim,), base_tyb, False, op_map, {}, ctor)
self._generate_for2(self._tags("cast{}{}", ("", "v", f"v{dim}"), ("", *self._tags("{}{}", (base_tya.name[0], "_"), (base_tyb.name[0], "_")))), tya, tyb)
def _generate_matrix_casts(self, base_tya: Ty, base_tyb: Ty):
ctor = "({name}){{{{ {0} }}}}"
for dim in itertools.product(self.BASE_DIMS, self.BASE_DIMS):
tya = CompositeTy(dim, base_tya, False, {}, {}, ctor)
tyb = CompositeTy(dim, base_tyb, False, {}, {}, ctor)
self._generate_for2(self._tags("cast{}{}",
("", "m", f"m{dim[0]}x_", f"m_x{dim[1]}", f"m{dim[0]}x{dim[1]}"),
("", *self._tags("{}{}", (base_tya.name[0], "_"), (base_tyb.name[0], "_")))
), tya, tyb)
def _generate_matrix(self, base_ty: Ty):
ctor = "({name}){{{{ {0} }}}}"
for dim in itertools.product(self.BASE_DIMS, self.BASE_DIMS):
ty = CompositeTy(dim, base_ty, False, {}, {}, ctor)
self._generate_for(
self._tags("m{}{}", ("", f"{dim[0]}x_", f"_x{dim[1]}", f"{dim[0]}x{dim[1]}"), ty.base_ty.name[0]) \
| ({"mS"} if dim[0] == dim[1] else set()),
ty
)
def generate(self):
print("// DO NOT EDIT; THIS FILE WAS GENERATED BY generate_math.py", file=self.fout)
print("#ifndef PSHINE_MATH_H_", file=self.fout)
print("#define PSHINE_MATH_H_", file=self.fout)
print(HEADER, file=self.fout)
print("", file=self.fout)
print(CONSTS, file=self.fout)
print("", file=self.fout)
if HAVE_FIXP:
print(instantiate(
self.BASE_TYPES[2], # type: ignore
FIXP_IMPL,
{ "T": "Qfp", "Qs": Q[1], "qs": str(Q[1]) }
), file=self.fout)
print("", file=self.fout)
for ty in self.BASE_TYPES:
self._generate_scalar(ty)
self._generate_vector(ty)
self._generate_matrix(ty)
for tya, tyb in itertools.product(self.BASE_TYPES, self.BASE_TYPES):
if tya == tyb: continue
self._generate_vector_casts(tya, tyb)
self._generate_matrix_casts(tya, tyb)
print("\n#endif // PSHINE_MATH_H_", file=self.fout)
if __name__ == "__main__":
if sys.argv[1] == "-":
Generator(TEMPLATES, sys.stdout).generate()
else:
with open(sys.argv[1], "w") as fout:
Generator(TEMPLATES, fout).generate()