-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtrain.py
282 lines (232 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import time
import argparse
import torch
import torchvision as tv
import torchvision.transforms as T
import model.losses as gan_losses
import utils.misc as misc
#from model.networks_tf import Generator, Discriminator
from model.networks import Generator, Discriminator
from utils.data import ImageDataset
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str,
default="configs/train.yaml", help="Path to yaml config file")
def training_loop(generator, # generator network
discriminator, # discriminator network
g_optimizer, # generator optimizer
d_optimizer, # discriminator optimizer
gan_loss_g, # generator gan loss function
gan_loss_d, # discriminator gan loss function
train_dataloader, # training dataloader
last_n_iter, # last iteration
writer, # tensorboard writer
config # Config object
):
device = torch.device('cuda' if torch.cuda.is_available()
and config.use_cuda_if_available else 'cpu')
losses = {}
generator.train()
discriminator.train()
# initialize dict for logging
losses_log = {'d_loss': [],
'g_loss': [],
'ae_loss': [],
'ae_loss1': [],
'ae_loss2': [],
}
# training loop
init_n_iter = last_n_iter + 1
train_iter = iter(train_dataloader)
time0 = time.time()
for n_iter in range(init_n_iter, config.max_iters):
# load batch of raw data
try:
batch_real = next(train_iter)
except:
train_iter = iter(train_dataloader)
batch_real = next(train_iter)
batch_real = batch_real.to(device, non_blocking=True)
# create mask
bbox = misc.random_bbox(config)
regular_mask = misc.bbox2mask(config, bbox).to(device)
irregular_mask = misc.brush_stroke_mask(config).to(device)
mask = torch.logical_or(irregular_mask, regular_mask).to(torch.float32)
# prepare input for generator
batch_incomplete = batch_real*(1.-mask)
ones_x = torch.ones_like(batch_incomplete)[:, 0:1].to(device)
x = torch.cat([batch_incomplete, ones_x, ones_x*mask], axis=1)
# generate inpainted images
x1, x2 = generator(x, mask)
batch_predicted = x2
# apply mask and complete image
batch_complete = batch_predicted*mask + batch_incomplete*(1.-mask)
# D training steps:
batch_real_mask = torch.cat(
(batch_real, torch.tile(mask, [config.batch_size, 1, 1, 1])), dim=1)
batch_filled_mask = torch.cat((batch_complete.detach(), torch.tile(
mask, [config.batch_size, 1, 1, 1])), dim=1)
batch_real_filled = torch.cat((batch_real_mask, batch_filled_mask))
d_real_gen = discriminator(batch_real_filled)
d_real, d_gen = torch.split(d_real_gen, config.batch_size)
d_loss = gan_loss_d(d_real, d_gen)
losses['d_loss'] = d_loss
# update D parameters
d_optimizer.zero_grad()
losses['d_loss'].backward()
d_optimizer.step()
# G training steps:
losses['ae_loss1'] = config.l1_loss_alpha * \
torch.mean((torch.abs(batch_real - x1)))
losses['ae_loss2'] = config.l1_loss_alpha * \
torch.mean((torch.abs(batch_real - x2)))
losses['ae_loss'] = losses['ae_loss1'] + losses['ae_loss2']
batch_gen = batch_predicted
batch_gen = torch.cat((batch_gen, torch.tile(
mask, [config.batch_size, 1, 1, 1])), dim=1)
d_gen = discriminator(batch_gen)
g_loss = gan_loss_g(d_gen)
losses['g_loss'] = g_loss
losses['g_loss'] = config.gan_loss_alpha * losses['g_loss']
if config.ae_loss:
losses['g_loss'] += losses['ae_loss']
# update G parameters
g_optimizer.zero_grad()
losses['g_loss'].backward()
g_optimizer.step()
# LOGGING
for k in losses_log.keys():
losses_log[k].append(losses[k].item())
# (tensorboard) logging
if n_iter % config.print_iter == 0:
# measure iterations/second
dt = time.time() - time0
print(f"@iter: {n_iter}: {(config.print_iter/dt):.4f} it/s")
time0 = time.time()
# write loss terms to console
# and tensorboard
for k, loss_log in losses_log.items():
loss_log_mean = sum(loss_log)/len(loss_log)
print(f"{k}: {loss_log_mean:.4f}")
if config.tb_logging:
writer.add_scalar(
f"losses/{k}", loss_log_mean, global_step=n_iter)
losses_log[k].clear()
# save example image grids to tensorboard
if config.tb_logging \
and config.save_imgs_to_tb_iter \
and n_iter % config.save_imgs_to_tb_iter == 0:
viz_images = [misc.pt_to_image(batch_complete),
misc.pt_to_image(x1), misc.pt_to_image(x2)]
img_grids = [tv.utils.make_grid(images[:config.viz_max_out], nrow=2)
for images in viz_images]
writer.add_image(
"Inpainted", img_grids[0], global_step=n_iter, dataformats="CHW")
writer.add_image(
"Stage 1", img_grids[1], global_step=n_iter, dataformats="CHW")
writer.add_image(
"Stage 2", img_grids[2], global_step=n_iter, dataformats="CHW")
# save example image grids to disk
if config.save_imgs_to_disc_iter \
and n_iter % config.save_imgs_to_disc_iter == 0:
viz_images = [misc.pt_to_image(batch_real),
misc.pt_to_image(batch_complete)]
img_grids = [tv.utils.make_grid(images[:config.viz_max_out], nrow=2)
for images in viz_images]
tv.utils.save_image(img_grids,
f"{config.checkpoint_dir}/images/iter_{n_iter}.png",
nrow=2)
# save state dict snapshot
if n_iter % config.save_checkpoint_iter == 0 \
and n_iter > init_n_iter:
misc.save_states("states.pth",
generator, discriminator,
g_optimizer, d_optimizer,
n_iter, config)
# save state dict snapshot backup
if config.save_cp_backup_iter \
and n_iter % config.save_cp_backup_iter == 0 \
and n_iter > init_n_iter:
misc.save_states(f"states_{n_iter}.pth",
generator, discriminator,
g_optimizer, d_optimizer,
n_iter, config)
def main():
args = parser.parse_args()
config = misc.get_config(args.config)
# set random seed
if config.random_seed != False:
torch.manual_seed(config.random_seed)
torch.cuda.manual_seed_all(config.random_seed)
import numpy as np
np.random.seed(config.random_seed)
# make checkpoint folder if nonexistent
if not os.path.isdir(config.checkpoint_dir):
os.makedirs(os.path.abspath(config.checkpoint_dir))
os.makedirs(os.path.abspath(f"{config.checkpoint_dir}/images"))
print(f"Created checkpoint_dir folder: {config.checkpoint_dir}")
# transforms
transforms = [T.RandomHorizontalFlip(0.5)] if config.random_horizontal_flip else None
# dataloading
train_dataset = ImageDataset(config.dataset_path,
img_shape=config.img_shapes,
random_crop=config.random_crop,
scan_subdirs=config.scan_subdirs,
transforms=transforms)
train_dataloader = torch.utils.data.DataLoader(train_dataset,
batch_size=config.batch_size,
shuffle=True,
drop_last=True,
num_workers=config.num_workers,
pin_memory=True)
device = torch.device('cuda' if torch.cuda.is_available()
and config.use_cuda_if_available else 'cpu')
# construct networks
cnum_in = config.img_shapes[2]
generator = Generator(cnum_in=cnum_in+2, cnum_out=cnum_in, cnum=48, return_flow=False)
discriminator = Discriminator(cnum_in=cnum_in+1, cnum=64)
generator = generator.to(device)
discriminator = discriminator.to(device)
# optimizers
g_optimizer = torch.optim.Adam(
generator.parameters(), lr=config.g_lr, betas=(config.g_beta1, config.g_beta2))
d_optimizer = torch.optim.Adam(
discriminator.parameters(), lr=config.d_lr, betas=(config.d_beta1, config.d_beta2))
# losses
if config.gan_loss == 'hinge':
gan_loss_d, gan_loss_g = gan_losses.hinge_loss_d, gan_losses.hinge_loss_g
elif config.gan_loss == 'ls':
gan_loss_d, gan_loss_g = gan_losses.ls_loss_d, gan_losses.ls_loss_g
else:
raise NotImplementedError(f"Unsupported loss: {config.gan_loss}")
# resume from existing checkpoint
last_n_iter = -1
if config.model_restore != '':
state_dicts = torch.load(config.model_restore)
generator.load_state_dict(state_dicts['G'])
if 'D' in state_dicts.keys():
discriminator.load_state_dict(state_dicts['D'])
if 'G_optim' in state_dicts.keys():
g_optimizer.load_state_dict(state_dicts['G_optim'])
if 'D_optim' in state_dicts.keys():
d_optimizer.load_state_dict(state_dicts['D_optim'])
if 'n_iter' in state_dicts.keys():
last_n_iter = state_dicts['n_iter']
print(f"Loaded models from: {config.model_restore}!")
# start tensorboard logging
if config.tb_logging:
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(config.log_dir)
# start training
training_loop(generator,
discriminator,
g_optimizer,
d_optimizer,
gan_loss_g,
gan_loss_d,
train_dataloader,
last_n_iter,
writer,
config)
if __name__ == '__main__':
main()