-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathecscale.py
310 lines (251 loc) · 12.3 KB
/
ecscale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import boto3
import datetime
from optparse import OptionParser
import os
SCALE_IN_CPU_TH = 30
SCALE_IN_MEM_TH = 60
FUTURE_MEM_TH = 70
DRAIN_ALL_EMPTY_INSTANCES = True
ASG_PREFIX = ''
ASG_SUFFIX = ''
ECS_AVOID_STR = 'awseb'
logline = {}
def clusters(ecsClient):
# Returns an iterable list of cluster names
response = ecsClient.list_clusters()
if not response['clusterArns']:
print 'No ECS cluster found'
return
return [cluster for cluster in response['clusterArns'] if ECS_AVOID_STR not in cluster]
def cluster_memory_reservation(cwClient, clusterName):
# Return cluster mem reservation average per minute cloudwatch metric
try:
response = cwClient.get_metric_statistics(
Namespace='AWS/ECS',
MetricName='MemoryReservation',
Dimensions=[
{
'Name': 'ClusterName',
'Value': clusterName
},
],
StartTime=datetime.datetime.utcnow() - datetime.timedelta(seconds=120),
EndTime=datetime.datetime.utcnow(),
Period=60,
Statistics=['Average']
)
return response['Datapoints'][0]['Average']
except Exception:
logger({'ClusterMemoryError': 'Could not retrieve mem reservation for {}'.format(clusterName)})
def find_asg(clusterName, asgData):
# Returns auto scaling group resourceId based on name
for asg in asgData['AutoScalingGroups']:
for tag in asg['Tags']:
if tag['Key'] == 'Name':
if tag['Value'].split(' ')[0] == '{}{}{}'.format(ASG_PREFIX, clusterName, ASG_SUFFIX):
return tag['ResourceId']
else:
logger({'ASGError': 'Auto scaling group for {} not found'.format(clusterName)})
def ec2_avg_cpu_utilization(clusterName, asgData, cwclient):
asg = find_asg(clusterName, asgData)
response = cwclient.get_metric_statistics(
Namespace='AWS/EC2',
MetricName='CPUUtilization',
Dimensions=[
{
'Name': 'AutoScalingGroupName',
'Value': asg
},
],
StartTime=datetime.datetime.utcnow() - datetime.timedelta(seconds=120),
EndTime=datetime.datetime.utcnow(),
Period=60,
Statistics=['Average']
)
return response['Datapoints'][0]['Average']
def asg_on_min_state(clusterName, asgData, asgClient, activeInstanceCount):
asg = find_asg(clusterName, asgData)
for sg in asgData['AutoScalingGroups']:
if sg['AutoScalingGroupName'] == asg:
if activeInstanceCount <= sg['MinSize']:
return True
return False
def empty_instances(clusterArn, activeContainerDescribed):
# returns a object of empty instances in cluster
instances = []
empty_instances = {}
for inst in activeContainerDescribed['containerInstances']:
if inst['runningTasksCount'] == 0 and inst['pendingTasksCount'] == 0:
empty_instances.update({inst['ec2InstanceId']: inst['containerInstanceArn']})
return empty_instances
def draining_instances(clusterArn, drainingContainerDescribed):
# returns an object of draining instances in cluster
instances = []
draining_instances = {}
for inst in drainingContainerDescribed['containerInstances']:
draining_instances.update({inst['ec2InstanceId']: inst['containerInstanceArn']})
return draining_instances
def terminate_decrease(instanceId, asgClient):
# terminates an instance and decreases the desired number in its auto scaling group
# [ only if desired > minimum ]
try:
response = asgClient.terminate_instance_in_auto_scaling_group(
InstanceId=instanceId,
ShouldDecrementDesiredCapacity=True
)
logger({'Action': 'Terminate', 'Message': response['Activity']['Cause']})
except Exception as e:
logger({'Error': e})
def scale_in_instance(clusterArn, activeContainerDescribed):
# iterates over hosts, finds the least utilized:
# The most under-utilized memory and minimum running tasks
# return instance obj {instanceId, runningInstances, containerinstanceArn}
instanceToScale = {'id': '', 'running': 0, 'freemem': 0}
for inst in activeContainerDescribed['containerInstances']:
for res in inst['remainingResources']:
if res['name'] == 'MEMORY':
if res['integerValue'] > instanceToScale['freemem']:
instanceToScale['freemem'] = res['integerValue']
instanceToScale['id'] = inst['ec2InstanceId']
instanceToScale['running'] = inst['runningTasksCount']
instanceToScale['containerInstanceArn'] = inst['containerInstanceArn']
elif res['integerValue'] == instanceToScale['freemem']:
# Two instances with same free memory level, choose the one with less running tasks
if inst['runningTasksCount'] < instanceToScale['running']:
instanceToScale['freemem'] = res['integerValue']
instanceToScale['id'] = inst['ec2InstanceId']
instanceToScale['running'] = inst['runningTasksCount']
instanceToScale['containerInstanceArn'] = inst['containerInstanceArn']
break
logger({'Scale candidate': '{} with free {}'.format(instanceToScale['id'], instanceToScale['freemem'])})
return instanceToScale
def running_tasks(instanceId, containerDescribed):
# return a number of running tasks on a given ecs host
for inst in containerDescribed['containerInstances']:
if inst['ec2InstanceId'] == instanceId:
return int(inst['runningTasksCount']) + int(inst['pendingTasksCount'])
def drain_instance(containerInstanceId, ecsClient, clusterArn):
# put a given ec2 into draining state
try:
response = ecsClient.update_container_instances_state(
cluster=clusterArn,
containerInstances=[containerInstanceId],
status='DRAINING'
)
except Exception as e:
logger({'DrainingError': e})
def future_reservation(activeInstanceCount, clusterMemReservation):
# If the cluster were to scale in an instance, calculate the effect on mem reservation
# return cluster_mem_reserve*active_instance_count / active_instance_count-1
if activeInstanceCount > 1:
futureMem = (clusterMemReservation*activeInstanceCount) / (activeInstanceCount-1)
else:
return 100
print '*** Current: {} | Future : {}'.format(clusterMemReservation, futureMem)
return futureMem
def retrieve_cluster_data(ecsClient, cwClient, asgClient, cluster):
clusterName = cluster.split('/')[1]
print '*** {} ***'.format(clusterName)
activeContainerInstances = ecsClient.list_container_instances(cluster=cluster, status='ACTIVE')
clusterMemReservation = cluster_memory_reservation(cwClient, clusterName)
if activeContainerInstances['containerInstanceArns']:
activeContainerDescribed = ecsClient.describe_container_instances(cluster=cluster, containerInstances=activeContainerInstances['containerInstanceArns'])
else:
print 'No active instances in cluster'
return False
drainingContainerInstances = ecsClient.list_container_instances(cluster=cluster, status='DRAINING')
if drainingContainerInstances['containerInstanceArns']:
drainingContainerDescribed = ecsClient.describe_container_instances(cluster=cluster, containerInstances=drainingContainerInstances['containerInstanceArns'])
drainingInstances = draining_instances(cluster, drainingContainerDescribed)
else:
drainingInstances = {}
drainingContainerDescribed = []
emptyInstances = empty_instances(cluster, activeContainerDescribed)
dataObj = {
'clusterName': clusterName,
'clusterMemReservation': clusterMemReservation,
'activeContainerDescribed': activeContainerDescribed,
'drainingInstances': drainingInstances,
'emptyInstances': emptyInstances,
'drainingContainerDescribed': drainingContainerDescribed
}
return dataObj
def logger(entry, action='log'):
# print log as one-line json from cloudwatch integration
if action == 'log':
global logline
logline.update(entry)
elif action == 'print':
print logline
def main(run='normal'):
ecsClient = boto3.client('ecs')
cwClient = boto3.client('cloudwatch')
asgClient = boto3.client('autoscaling')
asgData = asgClient.describe_auto_scaling_groups()
clusterList = clusters(ecsClient)
for cluster in clusterList:
########### Cluster data retrival ##########
clusterData = retrieve_cluster_data(ecsClient, cwClient, asgClient, cluster)
if not clusterData:
continue
else:
clusterName = clusterData['clusterName']
clusterMemReservation = clusterData['clusterMemReservation']
activeContainerDescribed = clusterData['activeContainerDescribed']
activeInstanceCount = len(activeContainerDescribed['containerInstances'])
drainingInstances = clusterData['drainingInstances']
emptyInstances = clusterData['emptyInstances']
########## Cluster scaling rules ###########
if drainingInstances.keys():
# There are draining instances to terminate
for instanceId, containerInstId in drainingInstances.iteritems():
if not running_tasks(instanceId, clusterData['drainingContainerDescribed']):
if run == 'dry':
print 'Would have terminated {}'.format(instanceId)
else:
print 'Terminating draining instance with no containers {}'.format(instanceId)
terminate_decrease(instanceId, asgClient)
else:
print 'Draining instance not empty'
if asg_on_min_state(clusterName, asgData, asgClient, activeInstanceCount):
print '{}: in Minimum state, skipping'.format(clusterName)
continue
if (clusterMemReservation < FUTURE_MEM_TH and
future_reservation(activeInstanceCount, clusterMemReservation) < FUTURE_MEM_TH):
# Future memory levels allow scale
if DRAIN_ALL_EMPTY_INSTANCES and emptyInstances.keys():
# There are empty instances
for instanceId, containerInstId in emptyInstances.iteritems():
if run == 'dry':
print 'Would have drained {}'.format(instanceId)
else:
print 'Draining empty instance {}'.format(instanceId)
drain_instance(containerInstId, ecsClient, cluster)
if (clusterMemReservation < SCALE_IN_MEM_TH):
# Cluster mem reservation level requires scale
if (ec2_avg_cpu_utilization(clusterName, asgData, cwClient) < SCALE_IN_CPU_TH):
instanceToScale = scale_in_instance(cluster, activeContainerDescribed)['containerInstanceArn']
if run == 'dry':
print 'Would have scaled {}'.format(instanceToScale)
else:
print 'Draining least utilized instanced {}'.format(instanceToScale)
drain_instance(instanceToScale, ecsClient, cluster)
else:
print 'CPU higher than TH, cannot scale'
print '***'
def lambda_handler(event, context):
parser = OptionParser()
parser.add_option("-a", "--access-key", dest="AWS_ACCESS_KEY_ID", help="Provide AWS access key")
parser.add_option("-s", "--secret-key", dest="AWS_SECRET_ACCESS_KEY", help="Provide AWS secret key")
parser.add_option("-d", "--dry-run", action="store_true", dest="DRY_RUN", default=False, help="Dry run the process")
(options, args) = parser.parse_args()
if options.AWS_ACCESS_KEY_ID and options.AWS_SECRET_ACCESS_KEY:
os.environ['AWS_ACCESS_KEY_ID'] = options.AWS_ACCESS_KEY_ID
os.environ['AWS_SECRET_ACCESS_KEY'] = options.AWS_SECRET_ACCESS_KEY
elif options.AWS_ACCESS_KEY_ID or options.AWS_SECRET_ACCESS_KEY:
print 'AWS key or secret are missing'
runType = 'dry' if options.DRY_RUN else 'normal'
main(run=runType)
if __name__ == '__main__':
# lambda_handler({}, '')
main()