You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have an issue using this command line python -m onnxoptimizer "model.onnx" "model_opti.onnx"
The script fail at onnx.checker.check_model(output_file) in file onnxoptimizer_main.py line 85
with the error : onnx.onnx_cpp2py_export.checker.ValidationError: model with IR version >= 3 must specify opset_import for ONNX
When i check what's in the model file, i only find
ir_version: 8
producer_name: "pytorch"
producer_version: "2.1.0"
graph {
}
Now more context
i took the model "togethercomputer/LLaMA-2-7B-32K" in huggingface
convert with the following commands
from transformers import AutoTokenizer, LlamaForCausalLM
Hello,
I have an issue using this command line python -m onnxoptimizer "model.onnx" "model_opti.onnx"
The script fail at onnx.checker.check_model(output_file) in file onnxoptimizer_main.py line 85
with the error : onnx.onnx_cpp2py_export.checker.ValidationError: model with IR version >= 3 must specify opset_import for ONNX
When i check what's in the model file, i only find
ir_version: 8
producer_name: "pytorch"
producer_version: "2.1.0"
graph {
}
Now more context
i took the model "togethercomputer/LLaMA-2-7B-32K" in huggingface
convert with the following commands
from transformers import AutoTokenizer, LlamaForCausalLM
CACHE_DIR = r".\cache_dir"
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K", cache_dir=CACHE_DIR)
model = LlamaForCausalLM.from_pretrained("togethercomputer/LLaMA-2-7B-32K", cache_dir=CACHE_DIR, use_safetensors = False)
prompt = "test"
inputs = tokenizer(prompt, return_tensors="pt")
input_names = ["input_ids"]
output_names = ["output"]
torch.onnx.export(model, inputs.input_ids, r'.\model\llama2_32k_with_weight.onnx',export_params=True, input_names=input_names, output_names=output_names, dynamic_axes={'input_ids' : {1 : 'context_length'}, 'output' : {1 : 'context_length'}})
`from transformers import AutoTokenizer, LlamaForCausalLM
CACHE_DIR = r".\cache_dir"
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K", cache_dir=CACHE_DIR)
model = LlamaForCausalLM.from_pretrained("togethercomputer/LLaMA-2-7B-32K", cache_dir=CACHE_DIR, use_safetensors = False)
prompt = "test"
inputs = tokenizer(prompt, return_tensors="pt")
input_names = ["input_ids"]
output_names = ["output"]
torch.onnx.export(model, inputs.input_ids, r'.\model\llama2_32k_with_weight.onnx',export_params=True, input_names=input_names, output_names=output_names, dynamic_axes={'input_ids' : {1 : 'context_length'}, 'output' : {1 : 'context_length'}})`from transformers import AutoTokenizer, LlamaForCausalLM
CACHE_DIR = r".\cache_dir"
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K", cache_dir=CACHE_DIR)
model = LlamaForCausalLM.from_pretrained("togethercomputer/LLaMA-2-7B-32K", cache_dir=CACHE_DIR, use_safetensors = False)
prompt = "test"
inputs = tokenizer(prompt, return_tensors="pt")
input_names = ["input_ids"]
output_names = ["output"]
torch.onnx.export(model, inputs.input_ids, r'.\model\llama2_32k_with_weight.onnx',export_params=True, input_names=input_names, output_names=output_names, dynamic_axes={'input_ids' : {1 : 'context_length'}, 'output' : {1 : 'context_length'}})
After that i use :
python -m onnxoptimizer "llama2_32k_with_weight.onnx" "model_opti.onnx"
And it fail
I tried to check where the optimizer fail exactly
in onnxoptimizer\init
model_str = model.SerializeToString()
length of model_str is 26988224572
optimized_model_str =C.optimize(model_str, passes)
length of model_str is 20
If someone have an idea
Thank in advance,
I use your package for a long time and it's the first time i encounter a problem, love your work
The text was updated successfully, but these errors were encountered: