From 5eb84ce0961d469f16a95c5a3f82f35b7cbcec0e Mon Sep 17 00:00:00 2001
From: Pieter Gijsbers
Date: Fri, 25 Nov 2022 15:10:19 +0100
Subject: [PATCH] Skip tests that use arff reading optimization for typecheck
(#1185)
Those types changed in the switch to parquet, and we need to
update the server parquet files and/or test expectations.
---
tests/test_datasets/test_dataset.py | 4 ++++
1 file changed, 4 insertions(+)
diff --git a/tests/test_datasets/test_dataset.py b/tests/test_datasets/test_dataset.py
index e9cb86c50..15a801383 100644
--- a/tests/test_datasets/test_dataset.py
+++ b/tests/test_datasets/test_dataset.py
@@ -143,6 +143,7 @@ def test_get_data_pandas(self):
self.assertTrue(X[col_name].dtype.name == col_dtype[col_name])
self.assertTrue(y.dtype.name == col_dtype["survived"])
+ @pytest.mark.skip("https://github.com/openml/openml-python/issues/1157")
def test_get_data_boolean_pandas(self):
# test to check that we are converting properly True and False even
# with some inconsistency when dumping the data on openml
@@ -170,6 +171,7 @@ def _check_expected_type(self, dtype, is_cat, col):
self.assertEqual(dtype.name, expected_type)
+ @pytest.mark.skip("https://github.com/openml/openml-python/issues/1157")
def test_get_data_with_rowid(self):
self.dataset.row_id_attribute = "condition"
rval, _, categorical, _ = self.dataset.get_data(include_row_id=True)
@@ -196,6 +198,7 @@ def test_get_data_with_target_array(self):
self.assertEqual(len(attribute_names), 38)
self.assertNotIn("class", attribute_names)
+ @pytest.mark.skip("https://github.com/openml/openml-python/issues/1157")
def test_get_data_with_target_pandas(self):
X, y, categorical, attribute_names = self.dataset.get_data(target="class")
self.assertIsInstance(X, pd.DataFrame)
@@ -220,6 +223,7 @@ def test_get_data_rowid_and_ignore_and_target(self):
self.assertListEqual(categorical, cats)
self.assertEqual(y.shape, (898,))
+ @pytest.mark.skip("https://github.com/openml/openml-python/issues/1157")
def test_get_data_with_ignore_attributes(self):
self.dataset.ignore_attribute = ["condition"]
rval, _, categorical, _ = self.dataset.get_data(include_ignore_attribute=True)