-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvision_transformer.py
633 lines (489 loc) · 23.8 KB
/
vision_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Mostly copy-paste from timm library.
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
import math
from functools import partial
import torch
import torch.nn as nn
import utils
from utils import trunc_normal_
import os
def drop_path(x, drop_prob: float = 0., training: bool = False):
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads # 8
head_dim = dim // num_heads # 384 // 8 = 48
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape # 1, 8040, 384
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, return_attention=False):
# atten.shape:
y, attn = self.attn(self.norm1(x))
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
if return_attention:
return x, attn
else:
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
print('!!! position embedding img size is {}'.format(img_size))
num_patches = (img_size // patch_size) * (img_size // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class VisionTransformer(nn.Module):
""" Vision Transforsmer. """
# NOTE: We add the mask token implementation on top of the code from DINO -- Xiao Pan.
def __init__(self, use_learnable_pos_emb=True, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs):
super().__init__()
self.num_features = self.embed_dim = embed_dim
self.patch_embed = PatchEmbed(
img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.use_learnable_pos_emb = use_learnable_pos_emb
if self.use_learnable_pos_emb:
print('!!! using learnable position embedding')
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
# sine-cosine positional embeddings
print('!!! using sincos position embedding')
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# Classifier head
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if self.use_learnable_pos_emb:
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
trunc_normal_(self.mask_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def interpolate_pos_encoding(self, x, w, h):
# self.pos_embed: 1, num_patches + 1, embed_dim
# x: B, num_patches_input + 1, embed_dim
# w,h: input x size
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
if npatch == N and w == h:
return self.pos_embed
class_pos_embed = self.pos_embed[:, 0]
patch_pos_embed = self.pos_embed[:, 1:]
# interpolate patch_pos_embed
dim = x.shape[-1]
w0 = w // self.patch_embed.patch_size
h0 = h // self.patch_embed.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
w0, h0 = w0 + 0.1, h0 + 0.1
# print(patch_pos_embed.shape)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
mode='bicubic',
)
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def prepare_tokens(self, x, mask):
B, nc, w, h = x.shape
# print(x.shape) # bs, 3, 256, 256
x = self.patch_embed(x) # patch linear embedding
# print(x.shape) # bs, 1024, 192
# add the [CLS] token to the embed patch tokens
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# print(x.shape) # bs, 1+1024, 192
B, _, C = x.shape
x_cls = x[:,0,:].unsqueeze(1)
x_hw = x[:,1:,:]
if not mask is None and not mask.sum()==0: # mask.sum()==0 when maskraiot = 0,
x_hw[mask] = self.mask_token
x = torch.cat([x_cls, x_hw], 1)
if self.use_learnable_pos_emb:
x = x + self.interpolate_pos_encoding(x, w, h)
else:
x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
return self.pos_drop(x)
def forward(self, x, mask, return_atten=False):
x = self.prepare_tokens(x, mask) # 1, 8041, 384
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
x, atten = blk(x, return_attention=True)
x = self.norm(x)
if return_atten:
return x[:, 0], x[:, 1:], atten.detach()
else:
return x[:, 0], x[:, 1:]
def forward_multilayer(self, x, mask, output_layers, return_atten=False):
x = self.prepare_tokens(x, mask) # 1, 8041, 384
ret_cls = []
ret_hw = []
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
x, atten = blk(x, return_attention=True)
if len(self.blocks) - i in output_layers:
x = self.norm(x)
ret_cls.append(x[:, 0])
ret_hw.append(x[:, 1:])
if return_atten:
return ret_cls, ret_hw, atten.detach()
else:
return ret_cls, ret_hw
def get_last_selfattention(self, x, mask=None):
x = self.prepare_tokens(x, mask)
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x)
else:
# return attention of the last block
return blk(x, return_attention=True)[1]
def get_intermediate_layers(self, x, mask=None, n=1):
x = self.prepare_tokens(x, mask)
# we return the output tokens from the `n` last blocks
output = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if len(self.blocks) - i <= n:
output.append(self.norm(x))
return output
def vit_tiny(img_size, patch_size=16, **kwargs):
model = VisionTransformer(img_size=img_size,
patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4,
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vit_small(img_size, patch_size=16, **kwargs):
model = VisionTransformer(img_size=img_size,
patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4,
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vit_base(img_size, patch_size=16, **kwargs):
model = VisionTransformer(img_size=img_size,
patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
class DINOHead(nn.Module):
def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256):
super().__init__()
nlayers = max(nlayers, 1)
print('!!! DINOHead nlayers is {}'.format(nlayers))
if nlayers == 1:
self.mlp = nn.Linear(in_dim, bottleneck_dim)
else:
layers = [nn.Linear(in_dim, hidden_dim)]
if use_bn:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(nn.GELU())
for _ in range(nlayers - 2):
layers.append(nn.Linear(hidden_dim, hidden_dim))
if use_bn:
layers.append(nn.BatchNorm1d(hidden_dim))
layers.append(nn.GELU())
layers.append(nn.Linear(hidden_dim, bottleneck_dim))
self.mlp = nn.Sequential(*layers)
self.apply(self._init_weights)
self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
self.last_layer.weight_g.data.fill_(1)
if norm_last_layer:
self.last_layer.weight_g.requires_grad = False
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.mlp(x)
x = nn.functional.normalize(x, dim=-1, p=2)
x = self.last_layer(x)
return x
class MultiLayerWrapper(nn.Module):
"""
Perform forward pass with multi layer output from ViT as input, and pass each layer to the corresponding Module item in the module list.
"""
def __init__(self, headlist):
super(MultiLayerWrapper, self).__init__()
# disable layers dedicated to ImageNet labels classification
self.headlist = headlist
def forward(self, x_list):
# x_list: [(B, C), (B, C), ... ] nlayer items
ret = []
for head, x in zip(self.headlist, x_list):
ret.append(head(x))
return ret
class MultiCropWrapper(nn.Module):
"""
Perform forward pass separately on each resolution input.
The inputs corresponding to a single resolution are clubbed and single
forward is run on the same resolution inputs. Hence we do several
forward passes = number of different resolutions used. We then
concatenate all the output features and run the head forward on these
concatenated features.
"""
def __init__(self, args, backbone, headlist, ):
super(MultiCropWrapper, self).__init__()
# disable layers dedicated to ImageNet labels classification
backbone.fc, backbone.head = nn.Identity(), nn.Identity()
self.args = args
self.backbone = backbone
self.headlist = MultiLayerWrapper(headlist)
def forward(self, x, mask=None, return_hw=False, return_atten=False):
# x: [ (bs, 3, h1, w1), (bs, 3, h2, w2)]
# print(len(x))
# convert to list
# if not mask is None:
# assert len(x) == 1
if not isinstance(x, list):
x = [x]
idx_crops = torch.cumsum(torch.unique_consecutive(
torch.tensor([inp.shape[-1] for inp in x]),
return_counts=True,
)[1], 0)
start_idx, output = 0, torch.empty(0).to(x[0].device)
output_hw_bfr_prj = []
output_hw_aft_prj = []
atten_list = []
output_bfr_prj = []
output_afr_prj = []
for end_idx in idx_crops:
# if return_atten:
# _out, _out_hw, atten = self.backbone(torch.cat(x[start_idx: end_idx]), return_atten=return_atten)
# # print(atten.shape) # B, num_head, 1+h*w, 1+h*w
# # assert False
# atten_list.append(atten)
# else:
# _out, _out_hw = self.backbone(torch.cat(x[start_idx: end_idx]))
# # print(_out.shape, _out_hw.shape) # 20, 384; 20, 196, 384
if mask == None or mask[start_idx: end_idx] == [None]:
_mask = None
else:
_mask = torch.cat(mask[start_idx: end_idx])
_out, _out_hw, atten = self.backbone.forward_multilayer(torch.cat(x[start_idx: end_idx]), mask=_mask, output_layers=self.args.multi_scale_layer, return_atten=True)
# print(len(_out), _out[0].shape)
# print(len(_out_hw), _out_hw[0].shape) # 6; 16, 784, 384
# assert False
# The output is a tuple with XCiT model. See:
# https://github.com/facebookresearch/xcit/blob/master/xcit.py#L404-L405
if isinstance(_out, tuple):
_out = _out[0]
# accumulate outputs
# output = torch.cat((output, _out))
start_idx = end_idx
output_bfr_prj.append(_out)
output_afr_prj.append(self.headlist(_out))
if return_hw:
output_hw_bfr_prj.append(_out_hw)
output_hw_aft_prj.append(self.headlist(_out_hw))
if return_atten:
atten_list.append(atten)
# for at in atten_list:
# print(at.shape)
# assert False
# print(output.shape) # [128, 384]; [640, 384]
# Run the head forward on the concatenated features.
ret_list = []
# ret_list.extend([output, self.head(output)])
ret_list.extend([output_bfr_prj, output_afr_prj])
if return_hw:
ret_list.extend([output_hw_bfr_prj, output_hw_aft_prj])
if return_atten:
ret_list.extend([atten_list])
return ret_list
# kind of ugly here, dont know the better implementation.
import vision_transformer as vits
def make_model(args, ):
# we changed the name DeiT-S for ViT-S to avoid confusions
args.arch = args.arch.replace("deit", "vit")
# if the network is a Vision Transformer (i.e. vit_tiny, vit_small, vit_base)
if args.arch in vits.__dict__.keys():
student = vits.__dict__[args.arch](img_size=[args.img_size,args.img_size],
patch_size=args.patch_size,
drop_path_rate=args.drop_path_rate, # stochastic depth
)
teacher = vits.__dict__[args.arch](img_size=[args.img_size,args.img_size], patch_size=args.patch_size)
embed_dim = student.embed_dim
# Ignore the repeat_module implementation here. We only supervise the laster layer output of ViT for the final version.
DINOHead_list_studnet = utils.get_repeat_module_list(args, DINOHead, len(args.multi_scale_layer), embed_dim, args.out_dim, use_bn=args.use_bn_in_head, norm_last_layer=args.norm_last_layer, nlayers=args.nlayers)
DINOHead_list_teacher = utils.get_repeat_module_list(args, DINOHead, len(args.multi_scale_layer), embed_dim, args.out_dim, args.use_bn_in_head, nlayers=args.nlayers)
# multi-crop wrapper handles forward with inputs of different resolutions
student = MultiCropWrapper(args, student, DINOHead_list_studnet)
teacher = MultiCropWrapper(args, teacher, DINOHead_list_teacher)
# move networks to gpu
student, teacher = student.cuda(), teacher.cuda()
# synchronize batch norms (if any)
if utils.has_batchnorms(student):
student = nn.SyncBatchNorm.convert_sync_batchnorm(student)
teacher = nn.SyncBatchNorm.convert_sync_batchnorm(teacher)
# we need DDP wrapper to have synchro batch norms working...
if args.distributed:
print('!!! Moving teacher model to distributed data parallel ... ')
teacher = nn.parallel.DistributedDataParallel(teacher, device_ids=[args.gpu], find_unused_parameters=True ) # find_unused_parameters=True
else:
print('!!! Moving teacher model to data parallel ... ')
teacher = torch.nn.parallel.DataParallel(teacher)
teacher_without_ddp = teacher.module
else:
# teacher_without_ddp and teacher are the same thing
teacher_without_ddp = teacher
# move to distrited parallel
if args.distributed:
print('!!! Moving student model to distributed data parallel ... ')
student = nn.parallel.DistributedDataParallel(student, device_ids=[args.gpu], find_unused_parameters=True ) # find_unused_parameters=True
else:
print('!!! Moving student model to data parallel ... ')
student = torch.nn.parallel.DataParallel(student)
# teacher and student start with the same weights
teacher_without_ddp.load_state_dict(student.module.state_dict())
# stop gradients for teacher
for p in teacher.parameters():
p.requires_grad = False
print(f"Student and Teacher are built: they are both {args.arch} network.")
return student, teacher, teacher_without_ddp
def load_pretrained_weights(model, pretrained_weights, checkpoint_key, model_name, patch_size, filter_keys=False):
if os.path.isfile(pretrained_weights):
state_dict = torch.load(pretrained_weights, map_location="cpu")
# # ===== from VRW ckpt =====
if 'model' in state_dict:
state_dict = state_dict['model']
# remov 'encoder' prefix
state_dict = {k.replace("encoder.", ""): v for k, v in state_dict.items()}
# # ===== from DUL ckpt =====
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
# ===== from INO ckpt =====
if checkpoint_key is not None and checkpoint_key in state_dict:
print(f"Take key {checkpoint_key} in provided checkpoint dict")
state_dict = state_dict[checkpoint_key]
if filter_keys:
# remove `module.` prefix
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# remove `backbone.` prefix induced by multicrop wrapper
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
msg = model.load_state_dict(state_dict, strict=False)
print('Pretrained weights found at {} and loaded with msg: {}'.format(pretrained_weights, msg))
else:
print("Please use the `--pretrained_weights` argument to indicate the path of the checkpoint to evaluate.")
url = None
if model_name == "vit_small" and patch_size == 16:
url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
elif model_name == "vit_small" and patch_size == 8:
url = "dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth"
elif model_name == "vit_base" and patch_size == 16:
url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
elif model_name == "vit_base" and patch_size == 8:
url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
elif model_name == "xcit_small_12_p16":
url = "dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain.pth"
elif model_name == "xcit_small_12_p8":
url = "dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain.pth"
elif model_name == "xcit_medium_24_p16":
url = "dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth"
elif model_name == "xcit_medium_24_p8":
url = "dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain.pth"
elif model_name == "resnet50":
url = "dino_resnet50_pretrain/dino_resnet50_pretrain.pth"
if url is not None:
print("Since no pretrained weights have been provided, we load the reference pretrained DINO weights.")
state_dict = torch.hub.load_state_dict_from_url(url="https://dl.fbaipublicfiles.com/dino/" + url)
model.load_state_dict(state_dict, strict=True)
else:
print("There is no reference weights available for this model => We use random weights.")