-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclinical_joint.py
542 lines (435 loc) · 24.7 KB
/
clinical_joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#!/usr/bin/env python
# coding: utf-8
import warnings
import os
import argparse
import json
from collections import defaultdict
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from model import *
import clinical_eval
from clinical_eval import MhsEvaluator
import utils
warnings.filterwarnings("ignore")
def eval_joint(model, eval_dataloader, eval_comments, eval_tok, eval_lab, eval_mod, eval_rel, eval_spo, ner2ix, mod2ix, rel2ix,
cls_max_len, device, message, print_levels=(0, 0, 0),
orig_tok=None, out_file=None,
f1_mode='micro', test_mode=False, verbose=0):
# ner_evaluator = clinical_eval.TupleEvaluator()
# mod_evaluator = clinical_eval.TupleEvaluator()
# rel_evaluator = clinical_eval.TupleEvaluator()
outfile_dir = out_file.rsplit('/', 1)[0]
if not os.path.exists(outfile_dir):
os.makedirs(outfile_dir)
model.eval()
with torch.no_grad(), open(out_file, 'w') as fo:
for eval_batch in tqdm(eval_dataloader, desc="Testing", disable=not test_mode):
b_toks, b_attn_mask, b_sent_mask, b_ner, b_mod = tuple(
t.to(device) for t in eval_batch[1:]
)
b_sent_ids = eval_batch[0].tolist()
b_text_list = [utils.padding_1d(
eval_tok[sent_id],
cls_max_len,
pad_tok='[PAD]') for sent_id in b_sent_ids]
b_gold_ner = [eval_lab[sent_id] for sent_id in b_sent_ids]
b_gold_mod = [eval_mod[sent_id] for sent_id in b_sent_ids]
b_gold_rel = tuple([eval_spo[sent_id] for sent_id in b_sent_ids])
if verbose:
for sent_id in b_sent_ids:
print([f"{ix}: {tok}" for ix, tok in enumerate(eval_tok[sent_id])])
print([f"{ix}: {lab}" for ix, lab in enumerate(eval_lab[sent_id])])
print(eval_rel[sent_id])
print()
b_pred_ner, b_pred_mod, b_pred_rel_ix = model(
b_toks, b_attn_mask.bool(),
b_sent_mask.long()
)
# # ner tuple -> [sent_id, [ids], ner_lab]
# b_gold_ner_tuple = utils.ner2tuple(b_sent_ids, b_gold_ner)
# b_pred_ner_tuple = utils.ner2tuple(b_sent_ids, b_pred_ner)
# ner_evaluator.update(b_gold_ner_tuple, b_pred_ner_tuple)
#
# # mod tuple -> [sent_id, [ids], ner_lab, mod_lab]
# b_pred_mod_tuple = [p + [b_pred_mod[b_sent_ids.index(p[0])][p[1][-1]]]
# for p in b_pred_ner_tuple if p[-1] != 'O']
# b_gold_mod_tuple = [g + [b_gold_mod[b_sent_ids.index(g[0])][g[1][-1]]]
# for g in b_gold_ner_tuple if g[-1] != 'O']
# mod_evaluator.update(b_gold_mod_tuple, b_pred_mod_tuple)
b_pred_rel = [[{
'subject': [b_text_list[b_id][tok_id] for tok_id in rel['subject']],
'predicate': rel['predicate'],
'object': [b_text_list[b_id][tok_id] for tok_id in rel['object']],
} for rel in sent_rel_ix] for b_id, sent_rel_ix in enumerate(b_pred_rel_ix) ]
# b_pred_rel_tuples = [[sent_id, ''.join(rel['subject']).replace('##', ''), ''.join(rel['object']).replace('##', ''), rel['predicate']]
# for sent_id, sent_rel in zip(b_sent_ids, b_pred_rel) for rel in sent_rel]
# b_gold_rel_tuples = [[sent_id, ''.join(rel['subject']).replace('##', ''), ''.join(rel['object']).replace('##', ''), rel['predicate']]
# for sent_id, sent_rel in zip(b_sent_ids, b_gold_rel) for rel in sent_rel]
# rel_evaluator.update(b_gold_rel_tuples, b_pred_rel_tuples)
# print([(sub, obj, rel) for s_id, sub, obj, rel in b_pred_rel_tuples])
# print([(sub, obj, rel) for s_id, sub, obj, rel in b_gold_rel_tuples])
# print()
for sid, sbw_ner, sbw_mod, sbw_rel, index_sbw_rel in zip(b_sent_ids, b_pred_ner, b_pred_mod, b_pred_rel, b_pred_rel_ix):
w_tok, aligned_ids = utils.sbwtok2tok_alignment(eval_tok[sid])
w_ner = utils.sbwner2ner(sbw_ner, aligned_ids)
w_mod = utils.sbwmod2mod(sbw_mod, aligned_ids)
w_rel, w_head = utils.sbwrel2head(index_sbw_rel, aligned_ids)
w_tok = w_tok[1:-1]
w_ner = w_ner[1:-1]
w_mod = w_mod[1:-1]
assert len(w_tok) == len(w_ner) == len(w_mod) == len(w_rel) == len(w_head)
if orig_tok:
assert len(orig_tok[sid]) == len(w_tok)
fo.write(f'{eval_comments[sid]}\n')
for index, (tok, ner, mod, rel, head) in enumerate(zip(orig_tok[sid] if orig_tok else w_tok, w_ner, w_mod, w_rel, w_head)):
fo.write(f"{index}\t{tok}\t{ner}\t{mod}\t{rel}\t{head}\n")
# ner_f1 = ner_evaluator.print_results(message + ' ner', f1_mode=f1_mode, print_level=print_levels[0])
# mod_f1 = mod_evaluator.print_results(message + ' mod', f1_mode=f1_mode, print_level=print_levels[1])
# rel_f1 = rel_evaluator.print_results(message + ' rel', f1_mode=f1_mode, print_level=print_levels[2])
# f1 = (ner_f1 + mod_f1 + rel_f1) / 3
# return f1, ner_f1, mod_f1, rel_f1
def main():
parser = argparse.ArgumentParser(description='PRISM joint recognizer')
parser.add_argument("--train_file",
default="data/2021Q1/mr150/doc_conll/cv0_train.conll",
type=str,
help="train file, multihead conll format.")
parser.add_argument("--dev_file",
default="data/2021Q1/mr150/doc_conll/cv0_dev.conll",
type=str,
help="dev file, multihead conll format.")
parser.add_argument("--test_file",
default="data/2021Q1/mr150/doc_conll/cv0_test.conll",
type=str,
help="test file, multihead conll format.")
parser.add_argument("--pretrained_model",
default="/home/feicheng/Tools/NICT_BERT-base_JapaneseWikipedia_32K_BPE",
type=str,
help="pre-trained model dir")
parser.add_argument("--saved_model", default='checkpoints/tmp/joint_mr_doc', type=str,
help="save/load model dir")
parser.add_argument("--do_lower_case",
action='store_true',
help="tokenizer: do_lower_case")
parser.add_argument("--test_output", default='tmp/mr_rev.test.conll', type=str,
help="test output filename")
parser.add_argument("--dev_output", default='tmp/mr_rev.dev.conll', type=str,
help="dev output filename")
parser.add_argument("--test_dir", default="tmp/", type=str,
help="test dir, multihead conll format.")
parser.add_argument("--pred_dir", default="tmp/", type=str,
help="prediction dir, multihead conll format.")
parser.add_argument("--batch_test",
action='store_true',
help="test batch files")
parser.add_argument("--batch_size", default=4, type=int,
help="BATCH SIZE")
parser.add_argument("--num_epoch", default=30, type=int,
help="fine-tuning epoch number")
parser.add_argument("--embed_size", default='[32, 32, 832]', type=str,
help="ner, mod, rel embedding size")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--freeze_after_epoch", default=50, type=int,
help="freeze encoder after N epochs")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--enc_lr", default=2e-5, type=float,
help="learning rate")
parser.add_argument("--dec_lr", default=1e-2, type=float,
help="learning rate")
parser.add_argument("--other_lr", default=1e-3, type=float,
help="learning rate")
parser.add_argument("--reduction", default='token_mean', type=str,
help="loss reduction: `token_mean` or `sum`")
parser.add_argument("--save_best", default='f1', type=str,
help="save the best model, given dev scores (f1 or loss)")
parser.add_argument("--save_step_portion", default=2, type=int,
help="save best model given a portion of steps")
parser.add_argument("--neg_ratio", default=1.0, type=float,
help="negative sample ratio")
parser.add_argument("--warmup_epoch", default=2, type=float,
help="warmup epoch")
parser.add_argument("--scheduled_lr",
action='store_true',
help="learning rate schedule")
parser.add_argument("--epoch_eval",
action='store_true',
help="eval each epoch")
parser.add_argument("--fp16",
action='store_true',
help="fp16")
parser.add_argument("--fp16_opt_level", type=str, default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
print(args)
bert_max_len = 512
bio_emb_size, mod_emb_size, rel_emb_size = eval(args.embed_size)
if args.do_train:
tokenizer = BertTokenizer.from_pretrained(
args.pretrained_model,
do_lower_case=args.do_lower_case,
do_basic_tokenize=False,
tokenize_chinese_chars=False
)
tokenizer.add_tokens(['[JASP]'])
train_comments, train_toks, train_ners, train_mods, train_rels, bio2ix, ne2ix, mod2ix, rel2ix = utils.extract_rel_data_from_mh_conll_v2(
args.train_file,
down_neg=0.0
)
print(bio2ix)
print(ne2ix)
print(rel2ix)
print(mod2ix)
print()
print('max sent len:', utils.max_sents_len(train_toks, tokenizer))
print(min([len(sent_rels) for sent_rels in train_rels]), max([len(sent_rels) for sent_rels in train_rels]))
print()
dev_comments, dev_toks, dev_ners, dev_mods, dev_rels, _, _, _, _ = utils.extract_rel_data_from_mh_conll_v2(
args.dev_file, down_neg=0.0)
print('max sent len:', utils.max_sents_len(dev_toks, tokenizer))
print(min([len(sent_rels) for sent_rels in dev_rels]), max([len(sent_rels) for sent_rels in dev_rels]))
print()
rel_count = defaultdict(lambda: 0)
for sent_rels in train_rels:
for rel in sent_rels:
rel_count[rel[-1]] += 1
for sent_rels in dev_rels:
for rel in sent_rels:
rel_count[rel[-1]] += 1
print(rel_count)
example_id = 15
print('Random example: id %i, len: %i' % (example_id, len(train_toks[example_id])))
for tok_id in range(len(train_toks[example_id])):
print("%i\t%10s\t%s" % (tok_id, train_toks[example_id][tok_id], train_ners[example_id][tok_id]))
print(train_rels[example_id])
print()
max_len = max(
utils.max_sents_len(train_toks, tokenizer),
utils.max_sents_len(dev_toks, tokenizer),
# utils.max_sents_len(test_toks, tokenizer)
)
cls_max_len = max_len + 2
train_dataset, train_comment, train_tok, train_ner, train_mod, train_rel, train_spo = utils.convert_rels_to_mhs_v3(
train_comments, train_toks, train_ners, train_mods, train_rels,
tokenizer, bio2ix, mod2ix, rel2ix, cls_max_len, verbose=0)
dev_dataset, dev_comment, dev_tok, dev_ner, dev_mod, dev_rel, dev_spo = utils.convert_rels_to_mhs_v3(
dev_comments, dev_toks, dev_ners, dev_mods, dev_rels,
tokenizer, bio2ix, mod2ix, rel2ix, cls_max_len, verbose=0)
cls_max_len = min(cls_max_len, bert_max_len)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
dev_dataloader = DataLoader(dev_dataset, batch_size=args.batch_size, shuffle=False)
num_epoch_steps = len(train_dataloader)
num_training_steps = args.num_epoch * num_epoch_steps
save_step_interval = math.ceil(num_epoch_steps / args.save_step_portion)
model = JointNerModReExtractor(
bert_url=args.pretrained_model,
ner_emb_size=bio_emb_size, ner_vocab=bio2ix,
mod_emb_size=mod_emb_size, mod_vocab=mod2ix,
rel_emb_size=rel_emb_size, rel_vocab=rel2ix,
device=args.device
)
model.encoder.resize_token_embeddings(len(tokenizer))
model.to(args.device)
param_optimizer = list(model.named_parameters())
encoder_name_list = ['encoder']
decoder_name_list = ['crf_tagger']
optimizer_grouped_parameters = [
{
'params': [p for n, p in param_optimizer if any(nd in n for nd in encoder_name_list)],
'lr': args.enc_lr
},
{
'params': [p for n, p in param_optimizer if any(nd in n for nd in decoder_name_list)],
'lr': args.dec_lr
},
{
'params': [p for n, p in param_optimizer if not any(nd in n for nd in encoder_name_list + decoder_name_list)],
'lr': args.other_lr
}
]
optimizer = AdamW(
optimizer_grouped_parameters,
eps=1e-8,
correct_bias=False
)
if args.scheduled_lr:
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_epoch_steps * args.warmup_epoch,
num_training_steps=num_training_steps
)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# (F1, NER_F1, MOD_F1, REL_F1, epoch, step)
best_dev_f1 = (float('-inf'), float('-inf'), float('-inf'), float('-inf'), 0, 0)
for param_group in optimizer.param_groups:
print(param_group['lr'])
print(len(param_group['params']))
print()
for epoch in range(1, args.num_epoch + 1):
train_loss, train_ner_loss, train_mod_loss, train_rel_loss = .0, .0, .0, .0
epoch_iterator = tqdm(train_dataloader, desc="Iteration", total=len(train_dataloader))
for step, batch in enumerate(epoch_iterator):
model.train()
if epoch > args.freeze_after_epoch:
utils.freeze_bert_layers(model, bert_name='encoder', freeze_embed=True, layer_list=list(range(0, 11)))
# input processing
b_toks, b_attn_mask, b_sent_mask, b_ner, b_mod = tuple(
t.to(args.device) for t in batch[1:]
)
b_sent_ids = batch[0].tolist()
b_gold_relmat = utils.gen_relmat(train_rel, b_sent_ids, cls_max_len, rel2ix, del_neg=False).to(args.device)
b_text_list = [utils.padding_1d(
train_tok[sent_id],
cls_max_len,
pad_tok='[PAD]') for sent_id in b_sent_ids]
ner_loss, mod_loss, rel_loss = model(
b_toks, b_attn_mask.bool(),
b_sent_mask.long(),
ner_gold=b_ner, mod_gold=b_mod, rel_gold=b_gold_relmat, reduction=args.reduction
)
loss = ner_loss + mod_loss + rel_loss
if args.n_gpu > 1:
loss = loss.mean()
ner_loss = ner_loss.mean()
mod_loss = mod_loss.mean()
rel_loss = rel_loss.mean()
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
if args.scheduled_lr:
scheduler.step()
model.zero_grad()
train_loss += loss.item()
train_ner_loss += ner_loss.item()
train_mod_loss += mod_loss.item()
train_rel_loss += rel_loss.item()
epoch_iterator.set_description(
f"L {train_loss/(step+1):.6f}, L_NER: {train_ner_loss/(step+1):.6f}, L_MOD: {train_mod_loss/(step+1):.6f}"
f" L_REL: {train_rel_loss/(step+1):.6f} | epoch: {epoch}/{args.num_epoch}:"
)
if epoch > 5:
if ((step + 1) % save_step_interval == 0) or (step == num_epoch_steps - 1):
eval_joint(model, dev_dataloader, dev_comment, dev_tok, dev_ner, dev_mod, dev_rel, dev_spo,
bio2ix, mod2ix, rel2ix, cls_max_len, args.device, "dev dataset",
print_levels=(0, 0, 0), out_file=args.dev_output, verbose=0)
dev_evaluator = MhsEvaluator(args.dev_file, args.dev_output)
dev_ner_f1 = dev_evaluator.eval_ner(print_level=0)
dev_mod_f1 = dev_evaluator.eval_mod(print_level=0)
dev_rel_f1 = dev_evaluator.eval_rel(print_level=0)
dev_f1 = ((dev_ner_f1 + dev_mod_f1 + dev_rel_f1) / 3,
dev_ner_f1, dev_mod_f1, dev_rel_f1)
dev_f1 += (epoch,)
dev_f1 += (step,)
if best_dev_f1[0] < dev_f1[0]:
print(
f" -> Previous best dev f1 {best_dev_f1[0]:.6f} (ner: {best_dev_f1[1]:.6f}, "
f"mod: {best_dev_f1[2]:.6f}, rel: {best_dev_f1[3]:.6f}; "
f"epoch {best_dev_f1[4]:d} / step {best_dev_f1[5]:d} \n "
f">> Current f1 {dev_f1[0]:.6f} (ner: {dev_f1[1]:.6f}, mod: {dev_f1[2]:.6f}, "
f"rel: {dev_f1[3]:.6f}; best model saved '{args.saved_model}'"
)
best_dev_f1 = dev_f1
""" save the best model """
if not os.path.exists(args.saved_model):
os.makedirs(args.saved_model)
model_to_save = model.module if hasattr(model, 'module') else model
torch.save(model_to_save.state_dict(), os.path.join(args.saved_model, 'model.pt'))
tokenizer.save_pretrained(args.saved_model)
with open(os.path.join(args.saved_model, 'ner2ix.json'), 'w') as fp:
json.dump(bio2ix, fp)
with open(os.path.join(args.saved_model, 'mod2ix.json'), 'w') as fp:
json.dump(mod2ix, fp)
with open(os.path.join(args.saved_model, 'rel2ix.json'), 'w') as fp:
json.dump(rel2ix, fp)
eval_joint(model, dev_dataloader, dev_comment, dev_tok, dev_ner, dev_mod, dev_rel, dev_spo, bio2ix,
mod2ix, rel2ix, cls_max_len, args.device, "dev dataset",
print_levels=(1, 1, 1), out_file=args.dev_output, verbose=0)
dev_evaluator = MhsEvaluator(args.dev_file, args.dev_output)
dev_evaluator.eval_ner(print_level=1)
dev_evaluator.eval_mod(print_level=1)
# dev_evaluator.eval_rel(print_level=1)
dev_evaluator.eval_mention_rel(print_level=1)
print(f"Best dev f1 {best_dev_f1[0]:.6f} (ner: {best_dev_f1[1]:.6f}, mod: {best_dev_f1[2]:.6f}, "
f"rel: {best_dev_f1[3]:.6f}; epoch {best_dev_f1[4]:d} / step {best_dev_f1[5]:d}\n")
model.load_state_dict(torch.load(os.path.join(args.saved_model, 'model.pt')))
torch.save(model, os.path.join(args.saved_model, 'model.pt'))
else:
'''Load tokenizer and tag2ix'''
tokenizer = BertTokenizer.from_pretrained(
args.saved_model,
do_lower_case=args.do_lower_case,
do_basic_tokenize=False,
tokenize_chinese_chars=False
)
with open(os.path.join(args.saved_model, 'ner2ix.json')) as json_fi:
bio2ix = json.load(json_fi)
with open(os.path.join(args.saved_model, 'mod2ix.json')) as json_fi:
mod2ix = json.load(json_fi)
with open(os.path.join(args.saved_model, 'rel2ix.json')) as json_fi:
rel2ix = json.load(json_fi)
'''Load full model'''
model = torch.load(os.path.join(args.saved_model, 'model.pt'))
model.to(args.device)
if args.batch_test:
for file_name in sorted(os.listdir(args.test_dir)):
if file_name.endswith(".conll"):
file_in = os.path.join(args.test_dir, file_name)
file_out = os.path.join(args.pred_dir, file_name)
test_comments, test_toks, test_ners, test_mods, test_rels, _, _, _, _ = utils.extract_rel_data_from_mh_conll_v2(file_in,
down_neg=0.0)
print(f"max sent len: {utils.max_sents_len(test_toks, tokenizer)}")
print(min([len(sent_rels) for sent_rels in test_rels]), max([len(sent_rels) for sent_rels in test_rels]))
print()
max_len = utils.max_sents_len(test_toks, tokenizer)
cls_max_len = max_len + 2
test_dataset, test_comment, test_tok, test_ner, test_mod, test_rel, test_spo = utils.convert_rels_to_mhs_v3(
test_comments, test_toks, test_ners, test_mods, test_rels,
tokenizer, bio2ix, mod2ix, rel2ix, cls_max_len, verbose=0)
cls_max_len = min(cls_max_len, bert_max_len)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)
eval_joint(model, test_dataloader, test_comment, test_tok, test_ner, test_mod, test_rel, test_spo,
bio2ix, mod2ix, rel2ix, cls_max_len, args.device, "Final test dataset",
print_levels=(2, 2, 2), out_file=file_out, verbose=0)
else:
test_comments, test_toks, test_ners, test_mods, test_rels, _, _, _, _ = utils.extract_rel_data_from_mh_conll_v2(
args.test_file,
down_neg=0.0)
print(f"max sent len: {utils.max_sents_len(test_toks, tokenizer)}")
print(min([len(sent_rels) for sent_rels in test_rels]), max([len(sent_rels) for sent_rels in test_rels]))
print()
max_len = utils.max_sents_len(test_toks, tokenizer)
cls_max_len = max_len + 2
test_dataset, test_comment, test_tok, test_ner, test_mod, test_rel, test_spo = utils.convert_rels_to_mhs_v3(
test_comments, test_toks, test_ners, test_mods, test_rels,
tokenizer, bio2ix, mod2ix, rel2ix, cls_max_len, verbose=0)
cls_max_len = min(cls_max_len, bert_max_len)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)
eval_joint(model, test_dataloader, test_comment, test_tok, test_ner, test_mod, test_rel, test_spo,
bio2ix, mod2ix, rel2ix, cls_max_len, args.device, "Final test dataset",
print_levels=(2, 2, 2), out_file=args.test_output, test_mode=False, verbose=0)
test_evaluator = MhsEvaluator(args.test_file, args.test_output)
test_evaluator.eval_ner(print_level=1)
test_evaluator.eval_mod(print_level=1)
# test_evaluator.eval_rel(print_level=2)
test_evaluator.eval_mention_rel(print_level=2)
if __name__ == '__main__':
main()