-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclinical_mhs.py
333 lines (273 loc) · 13 KB
/
clinical_mhs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#!/usr/bin/env python
# coding: utf-8
import warnings
import os
import argparse
from prefetch_generator import BackgroundGenerator
from tqdm import tqdm
import torch
from sklearn.metrics import classification_report
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.nn import CrossEntropyLoss
from transformers import *
from model import *
import utils
warnings.filterwarnings("ignore")
def main():
parser = argparse.ArgumentParser(description='PRISM tag recognizer')
parser.add_argument("--train_file", default="data/CoNLL04/train.txt", type=str,
help="train file, multihead conll format.")
parser.add_argument("--dev_file", default="data/CoNLL04/dev.txt", type=str,
help="dev file, multihead conll format.")
parser.add_argument("--test_file", default="data/CoNLL04/test.txt", type=str,
help="test file, multihead conll format.")
parser.add_argument("--pretrained_model",
default='bert-base-uncased',
type=str,
help="pre-trained model dir")
parser.add_argument("--do_lower_case",
# action='store_True',
default=True,
type=bool,
help="tokenizer: do_lower_case")
# parser.add_argument("--train_file", default="data/clinical2020Q1/cv4_train.conll", type=str,
# help="train file, multihead conll format.")
#
# parser.add_argument("--dev_file", default="data/clinical2020Q1/cv4_dev.conll", type=str,
# help="dev file, multihead conll format.")
#
# parser.add_argument("--test_file", default="data/clinical2020Q1/cv4_test.conll", type=str,
# help="test file, multihead conll format.")
#
# parser.add_argument("--pretrained_model",
# default="/home/feicheng/Tools/Japanese_L-12_H-768_A-12_E-30_BPE",
# type=str,
# help="pre-trained model dir")
#
# parser.add_argument("--do_lower_case",
# # action='store_True',
# default=False,
# type=bool,
# help="tokenizer: do_lower_case")
parser.add_argument("--save_model", default='checkpoints/rel', type=str,
help="save/load model dir")
parser.add_argument("--batch_size", default=8, type=int,
help="BATCH SIZE")
parser.add_argument("--num_epoch", default=50, type=int,
help="fine-tuning epoch number")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--lr", default=5e-5, type=float,
help="learning rate")
parser.add_argument("--ne_size", default=128, type=int,
help="size of name entity embedding")
parser.add_argument("--save_best", default='f1', type=str,
help="save the best model, given dev scores (f1 or loss)")
parser.add_argument("--save_step_interval", default=200, type=int,
help="save best model given a step interval")
parser.add_argument("--neg_ratio", default=1.0, type=float,
help="negative sample ratio")
parser.add_argument("--scheduled_lr",
# action='store_True',
default=False,
type=bool,
help="learning rate schedule")
parser.add_argument("--epoch_eval",
# action='store_True',
default=True,
type=bool,
help="eval each epoch")
args = parser.parse_args()
print(args)
n_gpu = torch.cuda.device_count()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device("cpu")
tokenizer = BertTokenizer.from_pretrained(
args.pretrained_model,
do_lower_case=args.do_lower_case,
do_basic_tokenize=False
)
tokenizer.add_tokens(['[JASP]'])
train_toks, train_labs, train_rels, bio2ix, ne2ix, rel2ix = utils.extract_rel_data_from_mh_conll(args.train_file,
0.0)
print(bio2ix)
print(ne2ix)
print(rel2ix)
print('max sent len:', utils.max_sents_len(train_toks, tokenizer))
print(min([len(sent_rels) for sent_rels in train_rels]), max([len(sent_rels) for sent_rels in train_rels]))
print()
dev_toks, dev_labs, dev_rels, _, _, _ = utils.extract_rel_data_from_mh_conll(args.dev_file, 0.0)
print('max sent len:', utils.max_sents_len(dev_toks, tokenizer))
print(min([len(sent_rels) for sent_rels in dev_rels]), max([len(sent_rels) for sent_rels in dev_rels]))
print()
test_toks, test_labs, test_rels, _, _, _ = utils.extract_rel_data_from_mh_conll(args.test_file, 0.0)
print('max sent len:', utils.max_sents_len(test_toks, tokenizer))
print(min([len(sent_rels) for sent_rels in test_rels]), max([len(sent_rels) for sent_rels in test_rels]))
print()
ix2rel = {v: k for k, v in rel2ix.items()}
ix2bio = {v: k for k, v in bio2ix.items()}
from collections import defaultdict
rel_count = defaultdict(lambda: 0)
for sent_rels in train_rels:
for rel in sent_rels:
rel_count[rel[-1]] += 1
for sent_rels in dev_rels:
for rel in sent_rels:
rel_count[rel[-1]] += 1
for sent_rels in test_rels:
for rel in sent_rels:
rel_count[rel[-1]] += 1
print(rel_count)
example_id = 15
print('Random example: id %i, len: %i' % (example_id, len(train_toks[example_id])))
for tok_id in range(len(train_toks[example_id])):
print("%i\t%10s\t%s" % (tok_id, train_toks[example_id][tok_id], train_labs[example_id][tok_id]))
print(train_rels[example_id])
print()
max_len = max(
utils.max_sents_len(train_toks, tokenizer),
utils.max_sents_len(dev_toks, tokenizer),
utils.max_sents_len(test_toks, tokenizer)
)
train_dataset = utils.convert_rels_to_mhs(train_toks, train_labs, train_rels,
tokenizer, bio2ix, ne2ix, rel2ix, max_len, verbose=0)
dev_dataset = utils.convert_rels_to_mhs(dev_toks, dev_labs, dev_rels,
tokenizer, bio2ix, ne2ix, rel2ix, max_len, verbose=1)
test_dataset = utils.convert_rels_to_mhs(test_toks, test_labs, test_rels,
tokenizer, bio2ix, ne2ix, rel2ix, max_len, verbose=0)
# from collections import Counter
# import json
# word_vocab = Counter()
#
# utils.convert_rels_to_pmhs(train_toks, train_labs, train_rels,
# tokenizer, rel2ix, "tmp/train_cv4.txt", word_vocab)
# utils.convert_rels_to_pmhs(dev_toks, dev_labs, dev_rels,
# tokenizer, rel2ix, "tmp/dev_cv4.txt", word_vocab)
# utils.convert_rels_to_pmhs(test_toks, test_labs, test_rels,
# tokenizer, rel2ix, "tmp/test_cv4.txt", word_vocab)
# utils.gen_vocab(word_vocab, "tmp/word_vocab.json")
# json.dump(rel2ix, open("tmp/relation_vocab.json", 'w'), ensure_ascii=False)
#
# print("pmhs data generated")
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.batch_size)
dev_sampler = SequentialSampler(dev_dataset)
dev_dataloader = DataLoader(dev_dataset, sampler=dev_sampler, batch_size=args.batch_size)
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.batch_size)
num_epoch_steps = len(train_dataloader)
num_training_steps = args.num_epoch * num_epoch_steps
warmup_ratio = 0.1
# rel2ix = {'Located_In': 0, 'Work_For': 1, 'Live_In': 2, 'OrgBased_In': 3, 'Kill': 4}
model = HeadSelectModel.from_pretrained(
args.pretrained_model,
ner_emb_dim=50,
rel_emb_dim=100,
ner_num_labels=len(bio2ix),
rel_num_labels=len(rel2ix),
rel_prob_threshold=0.5
)
# model = BertCRF.from_pretrained(args.PRE_MODEL, num_labels=len(bio2ix))
param_optimizer = list(model.named_parameters())
bert_name_list = ['bert']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if any(nd in n for nd in bert_name_list)], 'lr': 5e-5},
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in bert_name_list)], 'lr': 1e-3}
]
optimizer = AdamW(
optimizer_grouped_parameters,
lr=args.lr,
correct_bias=False
)
if args.scheduled_lr:
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_training_steps * warmup_ratio,
num_training_steps=num_training_steps
)
model.resize_token_embeddings(len(tokenizer))
model.to(device)
best_dev_f1 = float('-inf')
for epoch in range(1, args.num_epoch + 1):
# epoch_iterator = tqdm(train_dataloader, desc='Iteration')
train_loss, train_ner_loss, train_rel_loss = .0, .0, .0
pbar = tqdm(enumerate(BackgroundGenerator(train_dataloader)), total=len(train_dataloader))
for step, batch in pbar:
model.train()
if epoch > 15:
utils.freeze_bert_layers(model, freeze_embed=True, layer_list=list(range(0, 12)))
b_toks, b_attn_mask, b_ner, b_matrix_rel = tuple(
t.to(device) for t in batch[1:]
)
b_sent_ids = batch[0]
print(b_sent_ids)
# print(b_sent_ids.tolist())
ner_loss, rel_loss = model(b_toks, b_attn_mask.bool(), ner_labels=b_ner, rel_labels=b_matrix_rel)
loss = ner_loss + rel_loss
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
if args.scheduled_lr:
scheduler.step()
model.zero_grad()
train_loss += loss.item()
train_ner_loss += ner_loss.item()
train_rel_loss += rel_loss.item()
pbar.set_description("L {:.6f}, L_CRF: {:.6f}, L_REL: {:.6f}".format(loss.item(), ner_loss.item(), rel_loss.item()))
print('Epoch %i, train loss: %.6f, training ner_loss: %.6f, rel_loss: %.6f\n' % (
epoch,
train_loss / num_epoch_steps,
train_ner_loss / num_epoch_steps,
train_rel_loss / num_epoch_steps
))
if args.epoch_eval:
pred_rels, gold_rels = [], []
pred_ners, gold_ners = [], []
model.eval()
with torch.no_grad():
for dev_step, dev_batch in enumerate(dev_dataloader):
b_toks, b_attn_mask, b_ner, b_gold_relmat = tuple(
t.to(device) for t in dev_batch[1:]
)
b_sent_ids = dev_batch[0].tolist()
b_pred_ner, b_pred_relmat = model(b_toks, b_attn_mask.bool())
# tuples: [[step_id, batch_id, tail_id, head_id, rel], ...]
b_pred_ner_tuples = utils.ner2tuple(b_sent_ids, b_pred_ner, ix2bio)
pred_ners += b_pred_ner_tuples
b_gold_ner = utils.batch_demask(b_ner, b_attn_mask.bool())
b_gold_ner_tuples = utils.ner2tuple(b_sent_ids, b_gold_ner, ix2bio)
gold_ners += b_gold_ner_tuples
for b_id in range(len(b_sent_ids)):
sent_pred_rels = [[b_sent_ids[b_id]] + sent_pred_relmat
for sent_pred_relmat in torch.nonzero(b_pred_relmat[b_id]).tolist()
if sent_pred_relmat[-1] != rel2ix['N']]
pred_rels += sent_pred_rels
sent_gold_rels = [[b_sent_ids[b_id]] + sent_gold_relmat
for sent_gold_relmat in torch.nonzero(b_gold_relmat[b_id]).tolist()
if sent_gold_relmat[-1] != rel2ix['N']]
gold_rels += sent_gold_rels
print(len(gold_rels), len(pred_rels))
utils.evaluate_tuples(
pred_ners,
gold_ners,
ix2bio
)
utils.evaluate_tuples(
pred_ners,
gold_ners,
ix2bio
)
# utils.evaluate_ner(
# pred_ner,
# gold_ner,
# bio2ix
# )
# utils.evaluate_tuples(
# pred_rels,
# gold_rels,
# ix2rel
# )
if __name__ == '__main__':
main()