This repository has been archived by the owner on Aug 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathtasks.py
158 lines (127 loc) · 4.56 KB
/
tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) 2015 Snowplow Analytics Ltd. All rights reserved.
#
# This program is licensed to you under the Apache License Version 2.0,
# and you may not use this file except in compliance with the Apache License Version 2.0.
# You may obtain a copy of the Apache License Version 2.0 at http://www.apache.org/licenses/LICENSE-2.0.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the Apache License Version 2.0 is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the Apache License Version 2.0 for the specific language governing permissions and limitations there under.
import datetime, json, uuid, time
from functools import partial
from random import choice
from invoke import run, task
import boto
from boto import kinesis
import boto.dynamodb2
from boto.dynamodb2.fields import HashKey, RangeKey, KeysOnlyIndex, GlobalAllIndex
from boto.dynamodb2.table import Table
from boto.dynamodb2.types import NUMBER
JAR_FILE = "spark-streaming-example-project-0.1.0.jar"
# Selection of EventType values
COLORS = ['Red','Orange','Yellow','Green','Blue']
# DynamoDB settings
THROUGHPUT_READ = 20
THROUGHPUT_WRITE = 20
# AWS Kinesis Data Generator
def picker(seq):
"""
Returns a new function that can be called without arguments
to select and return a random color
"""
return partial(choice, seq)
def create_event():
"""
Returns a choice of color and builds and event
"""
event_id = str(uuid.uuid4())
color_choice = picker(COLORS)
return (event_id, {
"id": event_id,
"timestamp": datetime.datetime.now().isoformat(),
"type": color_choice()
})
def write_event(conn, stream_name):
"""
Returns the event and event event_payload
"""
event_id, event_payload = create_event()
event_json = json.dumps(event_payload)
conn.put_record(stream_name, event_json, event_id)
return event_json
@task
def generate_events(profile, region, stream):
"""
load demo data with python generator script for SimpleEvents
"""
conn = kinesis.connect_to_region(region, profile_name=profile)
while True:
event_json = write_event(conn, stream)
print "Event sent to Kinesis: {}".format(event_json)
#time.sleep(5)
@task
def build_spark():
"""
compile, build and assembly Apache Spark with Kinesis support
"""
run("rm -rf master.zip spark-master", pty=True)
run("wget https://github.com/apache/spark/archive/master.zip")
run("unzip master.zip", pty=True)
run('export MAVEN_OPTS="-Xmx1g -XX:MaxPermSize=256M -XX:ReservedCodeCacheSize=256m" && cd spark-master && mvn -Pkinesis-asl -DskipTests clean package', pty=True)
@task
def build_project():
"""
build spark-streaming-example-project
and package into "fat jar" ready for spark-submit
"""
run("sbt assembly", pty=True)
@task
def create_profile(profile):
"""
Create a profile
"""
run("aws configure --profile {}".format(profile), pty=True)
@task
def create_dynamodb_table(profile, region, table):
"""
DynamoDB table creation with AWS Boto library in Python
"""
connection = boto.dynamodb2.connect_to_region(region, profile_name=profile)
aggregate = Table.create(table,
schema=[
HashKey("BucketStart"),
RangeKey("EventType"),
],
throughput={
'read': THROUGHPUT_READ,
'write': THROUGHPUT_WRITE
},
connection=connection
)
@task
def create_kinesis_stream(profile, stream):
"""
create our Kinesis stream
"""
# TODO: switch to use boto
run("aws kinesis create-stream --stream-name {} --shard-count 1 --profile {}".format(stream, profile), pty=True)
@task
def describe_kinesis_stream(profile, stream):
"""
show status Kinesis stream named eventStream
"""
# TODO: switch to use boto
run("aws kinesis describe-stream --stream-name {} --profile {}".format(stream, profile), pty=True)
@task
def run_project(config_path):
"""
Submits the compiled "fat jar" to Apache Spark and
starts Spark Streaming based on project settings
"""
run("./spark-master/bin/spark-submit \
--class com.snowplowanalytics.spark.streaming.StreamingCountsApp \
--master local[4] \
./target/scala-2.10/{} \
--config {}".format(JAR_FILE, config_path),
pty=True)