Skip to content

Latest commit

 

History

History
146 lines (91 loc) · 7.63 KB

README.md

File metadata and controls

146 lines (91 loc) · 7.63 KB

REFIT: A Unified Watermark Removal Framework For Deep Learning Systems With Limited Data

This repository provides a PyTorch implementation of the paper REFIT: A Unified Watermark Removal Framework For Deep Learning Systems With Limited Data. It is built from the code base of Adi et al.

Paper

REFIT: A Unified Watermark Removal Framework For Deep Learning Systems With Limited Data

Xinyun Chen*, Wenxiao Wang*, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li, Dawn Song. (* Equal contribution)

ACM Asia Conference on Computer and Communications Security (AsiaCCS), 2021.

Content

The repository contains scripts for:

  • watermark embedding with different type of schemes (OOD, Pattern-based, Exponential weighting and Adversarial Frontier Stitching)
  • watermark removal in our REFIT framework: fine-tuning with two optional modules: Elastic Weight Consolidation (EWC) and Augmentation with Unlabeled data (AU).

Dependencies

Provided code runs in Python3.5 with PyTorch 1.4.0 and torchvision 0.5.0.

It is expected to be compatible with other versions without major changes.

Usage

1. Training a clean/watermarked model

One may use train.py to train a clean/watermarked model.

An example that trains a clean model:

python3 train.py --runname=cifar10_clean --save_model=cifar10_clean.t7 --dataset=cifar10 --model=resnet18

An example that trains a watermarked model:

python3 train.py --runname=cifar10_OOD --save_model=cifar10_OOD.t7 --dataset=cifar10 --model=resnet18 --wmtrain --wm_path=./data/trigger_set/ --wm_lbl=labels-cifar.txt

For more information regarding training options, please check the help message:

python3 train.py --help

To watermark models with different embedding schemes

Please refer to our paper for details regarding supported embedding schemes.

Watermark sets used in this project are included in ./data.

  • To embed OOD or pattern-based watermarks, one can simply use --wm_path and --wm_lbl to specify the corresponding watermark inputs and labels.

  • To watermark a model with exponential weighting, one needs to train a clean model with --model=resnet18_EW and then fine-tune it using fine-tune.py with --embed enabled and --exp_weighing --wm2_path --wm2_lbl --wm_batch_size specified. An example is as follow (please refer to python3 fine-tune.py --help for fine-tuning options):

    python3 train.py --runname=cifar10_clean --save_model=cifar10_clean_EW.t7 --dataset=cifar10 --model=resnet18_EW
    
    python3 fine-tune.py --load_path=checkpoint/cifar10_clean_EW.t7 --runname cifar10_EW --tunealllayers --dataset=cifar10 --wm_path=./data/trigger_set_EW_cifar10/ --wm_lbl=labels_flip.txt --embed --exp_weighting=2.0 --wm2_path=./data/trigger_set_EW_cifar10/ --wm2_lbl=labels_flip.txt --wm_batch_size=4
    
  • To watermark a model with adversarial frontier stitching, one needs to train a clean model first, then generate a watermark set mixed with true adversaries and false adversaries of it using gen_watermark_AFS.py (which will be stored along with the clean model as a new checkpoint ended with .afs_nowm.t7), and finally fine-tune from checkpoint with --wm_afs enabled and --wm_afs_bsize specified. An example is as follow (please refer to python3 gen_watermark_AFS.py --help and python3 fine-tune.py --help for more information):

    python3 gen_watermark_AFS.py --load_path=checkpoint/cifar10_clean.t7 --runname=cifar10_AFS0.15 --dataset=cifar10 --model=resnet18 --eps=0.15
    
    python3 fine-tune.py --load_path=checkpoint/cifar10_AFS0.15.afs_nowm.t7 --runname=cifar10_AFS0.15 --dataset=cifar10 --tunealllayers --max_epochs=40 --lr 0.001 --lradj=20 --ratio=0.1 --wm_afs --wm_afs_bsize=2
    

2. Watermark Removal

We support in fine-tune.py watermark removal in our REFIT framework, fine-tuning with optional Elastic Weight Consolidation (EWC) and Augmentation with Unlabeled data (AU).

An example of simply fine-tuning is as follow:

python3 fine-tune.py --load_path=checkpoint/cifar10_OOD.t7 --runname cifar10_OOD_removal --tunealllayers  --max_epochs=60 --lr=0.05 --lradj=1 --dataset=cifar10_partial+0.2 --ratio=0.9 --batch_size=100

To enable Elastic Weight Consolidation (EWC), one should specify --EWC_coef --EWC_samples.

An example is as follow:

python3 fine-tune.py --load_path=checkpoint/cifar10_OOD.t7 --runname cifar10_OOD_removal_EWC --tunealllayers  --max_epochs=60 --lr=0.15 --lradj=1 --dataset=cifar10_partial+0.2 --ratio=0.9 --batch_size=100 --EWC_coef=10 --EWC_samples=10000

To enable Augmentation with Unlabeled data (AU), one should specify --extra_data --extra_data_bsize --extra_net.

An example is as follow:

python3 fine-tune.py --lr 0.1 --load_path=checkpoint/cifar10_OOD.t7 --runname cifar10_OOD_removal_AU --tunealllayers  --max_epochs=60 --lradj=15 --dataset=cifar10_partial+0.2 --ratio=0.1 --extra_data=imagenet32+0+1002+1+11 --extra_data_bsize=50 --extra_net=checkpoint/cifar10_OOD.t7

EWC and AU can be enabled simultaneously.

For more information, please refer to python3 fine-tune.py --help.

Extended usage of the --dataset argument

In this section we will introduce the detailed usage of the --dataset argument with our codebase, which enables one to specify a split of a dataset for training and fine-tuning. The same formatting applies to other argument regarding datasets as well, such as --extra_data for AU.

  • To specify CIFAR-10, CIFAR-100, the labeled split of STL-10 and the unlabeled split of STL-10, one may use cifar10 , cifar100, stl10 and stl10_unlabeled respectively.
  • To specify only a fraction of CIFAR-10, CIFAR-100 and the unlabeled split of STL-10, one may use [dataset]_partial+[fraction]. For instance, cifar10_partial+0.2 for the first 20% of CIFAR-10 training set and stl10_unlabeled_partial+0.5 for the first 50% of STL-10's unlabeled split.
  • To specify a part of ImageNet32 (a downsampled version of ImageNet, available here), one may use imagenet32+[label_lower]+[label_upper]+[split_lower]+[split_upper] for a split of ImageNet32, with only samples from the [label_lower]-th to [label_upper] - 1-th classes (indexed from 0 to 999) that are stored within the [split_lower]-th to [split_upper] - 1-th splits (indexed from 1 to 10) of ImageNet32. For instance, imagenet32+0+1000+1+11 corresponds to the entire ImageNet32 and imagenet32+500+1000+1+2 contains only samples in the first split with labels no less than 500.

Usage of the --load_path_private argument

This optional argument is used in transfer learning settings.

It specifies the path to another pre-trained model, whose linear layer will be extracted to replace the one from the current fine-tuned model when evaluating watermark accuracy.

3. Testing

The predict.py script allows you to test your model on a testing set or on a watermark set.

Examples (Please refer to python3 predict.py --help for more information):

python3 predict.py --model_path=./checkpoint/cifar10_OOD.t7 --dataset=cifar10
python3 predict.py --model_path=./checkpoint/cifar10_OOD.t7 --wm_path=./data/trigger_set --wm_lbl=labels-cifar.txt --testwm

Citation

If you find our work useful please cite:

@inproceedings{chen2021refit,
  title={REFIT: A Unified Watermark Removal Framework For Deep Learning Systems With Limited Data},
  author={Chen, Xinyun and Wang, Wenxiao and Bender, Chris and Ding, Yiming and Jia, Ruoxi and Li, Bo and Song, Dawn},
  booktitle={Proceedings of the 2021 on Asia Conference on Computer and Communications Security},
  year={2021}
}