-
Notifications
You must be signed in to change notification settings - Fork 29
/
fixkalman.h
603 lines (511 loc) · 17.6 KB
/
fixkalman.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
#ifndef _KALMAN_H_
#define _KALMAN_H_
#include <stdint.h>
#include "compiler.h"
#include "fixmatrix.h"
/*!
* \def KALMAN_DISABLE_UC Global define to disable functions for systems without control inputs
*/
#ifdef KALMAN_DISABLE_UC
#pragma message("KALMAN_DISABLE_UC defined. Disabling Kalman filter functions for systems without control inputs.")
#endif
/*!
* \def KALMAN_DISABLE_C Global define to disable functions for systems with control inputs
*/
#ifdef KALMAN_DISABLE_C
#pragma message("KALMAN_DISABLE_C defined. Disabling Kalman filter functions for systems with control inputs.")
#endif
/*!
* \def KALMAN_DISABLE_LAMBDA Global define to disable certainty tuning.
*/
#ifdef KALMAN_DISABLE_LAMBDA
#pragma message("KALMAN_DISABLE_LAMBDA defined. Disabling Kalman filter functions with certainty tuning.")
#endif
#if defined(KALMAN_DISABLE_C) && defined(KALMAN_DISABLE_UC)
#error KALMAN_DISABLE_C and KALMAN_DISABLE_UC defined; This removes all Kalman filter functions. Remove one of the defines and rebuild.
#endif
#ifndef KALMAN_DISABLE_UC
/*!
* \brief Kalman Filter structure for a system without control inputs
* \see kalman16_observation_t
* \see kalman16_t
*/
typedef struct
{
/*!
* \brief State vector The state transition matrix (#states x #states)
*/
mf16 x;
/*!
* \brief System matrix (#states x 1)
* \see P
*/
mf16 A;
/*!
* \brief System covariance matrix (#states x #states)
* \see A
*/
mf16 P;
/*!
* \brief System process noise matrix (#states x #states)
* \see P
*/
mf16 Q;
} kalman16_uc_t;
#endif // KALMAN_DISABLE_UC
#if !defined(KALMAN_DISABLE_C) || !defined(KALMAN_DISABLE_UC) // some UC methods require this struct
/*!
* \brief Kalman Filter structure
* \see kalman16_observation_t
* \see kalman16_uc_t
*/
typedef struct
{
/*!
* \brief State vector The state transition matrix (#states x #states)
*/
mf16 x;
/*!
* \brief System matrix (#states x 1)
* \see P
*/
mf16 A;
/*!
* \brief System covariance matrix (#states x #states)
* \see A
*/
mf16 P;
/*!
* \brief Input vector (#inputs x 1)
*/
mf16 u;
/*!
* \brief Input matrix (#inputs x #inputs)
* \see Q
*/
mf16 B;
/*!
* \brief Input covariance/uncertainty matrix (#inputs x #inputs)
* \see B
*/
mf16 Q;
} kalman16_t;
#endif // KALMAN_DISABLE_C
/*!
* \brief Kalman Filter measurement structure
* \see kalman16_t
*/
typedef struct
{
/*!
* \brief Measurement vector (#measurements x 1)
*/
mf16 z;
/*!
* \brief Measurement transformation matrix (#measurements x #states)
* \see R
*/
mf16 H;
/*!
* \brief Observation process noise covariance matrix (#measurements x #measurements)
* \see H
*/
mf16 R;
} kalman16_observation_t;
/************************************************************************/
/* Helper defines */
/************************************************************************/
/*!
* \def EXTERN_INLINE_KALMAN Helper inline to switch from local inline to extern inline
*/
#ifndef EXTERN_INLINE_KALMAN
#define EXTERN_INLINE_KALMAN EXTERN_INLINE
#endif
/************************************************************************/
/* Functions for systems with control inputs */
/************************************************************************/
#ifndef KALMAN_DISABLE_C
/*!
* \brief Initializes the Kalman Filter
* \param[in] kf The Kalman Filter structure to initialize
* \param[in] num_states The number of state variables
* \param[in] num_inputs The number of input variables
*/
COLD NONNULL
void kalman_filter_initialize(kalman16_t *const kf, uint_fast8_t num_states, uint_fast8_t num_inputs);
/*!
* \brief Performs the time update / prediction step of only the state vector
* \param[in] kf The Kalman Filter structure to predict with.
*
* \see kalman_predict
* \see kalman_predict_tuned
*/
HOT NONNULL
void kalman_predict_x(register kalman16_t *const kf);
/*!
* \brief Performs the time update / prediction step of only the state covariance matrix
* \param[in] kf The Kalman Filter structure to predict with.
*
* \see kalman_predict
* \see kalman_predict_P_tuned
*/
HOT NONNULL
void kalman_predict_P(register kalman16_t *const kf);
#ifndef KALMAN_DISABLE_LAMBDA
/*!
* \brief Performs the time update / prediction step of only the state covariance matrix
* \param[in] kf The Kalman Filter structure to predict with.
*
* \see kalman_predict_tuned
* \see kalman_predict_P
*/
HOT NONNULL
void kalman_predict_P_tuned(register kalman16_t *const kf, fix16_t lambda);
#endif // KALMAN_DISABLE_LAMBDA
/*!
* \brief Performs the time update / prediction step.
* \param[in] kf The Kalman Filter structure to predict with.
* \param[in] lambda Lambda factor (\c 0 < {\ref lambda} <= \c 1) to forcibly reduce prediction certainty. Smaller values mean larger uncertainty.
*
* This call assumes that the input covariance and variables are already set in the filter structure.
*
* \see kalman_predict_x
* \see kalman_predict_P
*/
HOT NONNULL
EXTERN_INLINE_KALMAN void kalman_predict(kalman16_t *kf)
{
/************************************************************************/
/* Predict next state using system dynamics */
/* x = A*x */
/************************************************************************/
kalman_predict_x(kf);
/************************************************************************/
/* Predict next covariance using system dynamics and input */
/* P = A*P*A' + B*Q*B' */
/************************************************************************/
kalman_predict_P(kf);
}
#ifndef KALMAN_DISABLE_LAMBDA
/*!
* \brief Performs the time update / prediction step.
* \param[in] kf The Kalman Filter structure to predict with.
* \param[in] lambda Lambda factor (\c 0 < {\ref lambda} <= \c 1) to forcibly reduce prediction certainty. Smaller values mean larger uncertainty.
*
* This call assumes that the input covariance and variables are already set in the filter structure.
*
* \see kalman_predict_x
* \see kalman_predict_P_tuned
*/
HOT NONNULL
EXTERN_INLINE_KALMAN void kalman_predict_tuned(kalman16_t *kf, fix16_t lambda)
{
/************************************************************************/
/* Predict next state using system dynamics */
/* x = A*x */
/************************************************************************/
kalman_predict_x(kf);
/************************************************************************/
/* Predict next covariance using system dynamics and input */
/* P = A*P*A' * 1/lambda^2 + B*Q*B' */
/************************************************************************/
kalman_predict_P_tuned(kf, lambda);
}
#endif // KALMAN_DISABLE_LAMBDA
#endif // KALMAN_DISABLE_C
/*!
* \brief Performs the measurement update step.
* \param[in] kf The Kalman Filter structure to correct.
*/
HOT NONNULL
void kalman_correct(kalman16_t *kf, kalman16_observation_t *kfm);
#ifndef KALMAN_DISABLE_C
/*!
* \brief Gets a pointer to the state vector x.
* \param[in] kf The Kalman Filter structure
* \return The state vector x.
*/
LEAF RETURNS_NONNULL NONNULL HOT PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_state_vector(kalman16_t *kf)
{
return &(kf->x);
}
/*!
* \brief Gets a pointer to the state transition matrix A.
* \param[in] kf The Kalman Filter structure
* \return The state transition matrix A.
*/
LEAF RETURNS_NONNULL NONNULL HOT PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_state_transition(kalman16_t *kf)
{
return &(kf->A);
}
/*!
* \brief Gets a pointer to the system covariance matrix P.
* \param[in] kf The Kalman Filter structure
* \return The system covariance matrix.
*/
LEAF RETURNS_NONNULL NONNULL PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_system_covariance(kalman16_t *kf)
{
return &(kf->P);
}
/*!
* \brief Gets a pointer to the input vector u.
* \param[in] kf The Kalman Filter structure
* \return The input vector u.
*/
LEAF RETURNS_NONNULL NONNULL HOT PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_input_vector(kalman16_t *kf)
{
return &(kf->u);
}
/*!
* \brief Gets a pointer to the input transition matrix B.
* \param[in] kf The Kalman Filter structure
* \return The input transition matrix B.
*/
LEAF RETURNS_NONNULL NONNULL HOT PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_input_transition(kalman16_t *kf)
{
return &(kf->B);
}
/*!
* \brief Gets a pointer to the input covariance matrix P.
* \param[in] kf The Kalman Filter structure
* \return The input covariance matrix.
*/
LEAF RETURNS_NONNULL NONNULL HOT PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_input_covariance(kalman16_t *kf)
{
return &(kf->Q);
}
#endif // KALMAN_DISABLE_C
/************************************************************************/
/* Functions for observation handling */
/************************************************************************/
/*!
* \brief Sets the measurement vector
* \param[in] kfm The Kalman Filter measurement structure to initialize
* \param[in] num_states The number of states
* \param[in] num_observations The number of observations
*/
COLD LEAF NONNULL
void kalman_observation_initialize(kalman16_observation_t *const kfm, uint_fast8_t num_states, uint_fast8_t num_observations);
/*!
* \brief Gets a pointer to the measurement vector z.
* \param[in] kfm The Kalman Filter measurement structure.
* \return The measurement vector z.
*/
LEAF RETURNS_NONNULL NONNULL HOT PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_observation_vector(kalman16_observation_t *kfm)
{
return &(kfm->z);
}
/*!
* \brief Gets a pointer to the measurement transformation matrix H.
* \param[in] kfm The Kalman Filter measurement structure.
* \return The measurement transformation matrix H.
*/
RETURNS_NONNULL NONNULL HOT PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_observation_transformation(kalman16_observation_t *kfm)
{
return &(kfm->H);
}
/*!
* \brief Gets a pointer to the process noise matrix R.
* \param[in] kfm The Kalman Filter measurement structure.
* \return The process noise matrix R.
*/
LEAF RETURNS_NONNULL NONNULL HOT PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_observation_process_noise(kalman16_observation_t *kfm)
{
return &(kfm->R);
}
/************************************************************************/
/* Functions for systems without control inputs */
/************************************************************************/
#ifndef KALMAN_DISABLE_UC
/*!
* \brief Initializes the Kalman Filter
* \param[in] kf The Kalman Filter structure to initialize
* \param[in] num_states The number of state variables
*/
COLD NONNULL
void kalman_filter_initialize_uc(kalman16_uc_t *const kf, uint_fast8_t num_states);
/*!
* \brief Performs the time update / prediction step of only the state vector
* \param[in] kf The Kalman Filter structure to predict with.
*
* \see kalman_predict_uc
* \see kalman_predict_tuned_uc
*/
HOT NONNULL
void kalman_predict_x_uc(register kalman16_uc_t *const kf);
/*!
* \brief Performs the time update / prediction step of only the state vector with integration.
* \param[in] kf The Kalman Filter structure to predict with.
* \param[in] deltaT The time differential (seconds)
*
* \see kalman_predict_uc
* \see kalman_predict_tuned_uc
*/
HOT NONNULL
void kalman_cpredict_x_uc(register kalman16_uc_t *const kf, register fix16_t deltaT);
/*!
* \brief Performs the time update / prediction step of only the state covariance matrix
* \param[in] kf The Kalman Filter structure to predict with.
*
* \see kalman_predict_uc
* \see kalman_predict_P_tuned_uc
*/
HOT NONNULL
void kalman_predict_P_uc(register kalman16_uc_t *const kf);
/*!
* \brief Performs the continuous-time time update / prediction step of only the state covariance matrix with integration.
* \param[in] kf The Kalman Filter structure to predict with.
* \param[in] deltaT The time differential (seconds)
*
* \see kalman_predict_uc
* \see kalman_predict_P_tuned_uc
*/
HOT NONNULL
void kalman_cpredict_P_uc(register kalman16_uc_t *const kf, register fix16_t deltaT);
#ifndef KALMAN_DISABLE_LAMBDA
/*!
* \brief Performs the time update / prediction step of only the state covariance matrix
* \param[in] kf The Kalman Filter structure to predict with.
*
* \see kalman_predict_tuned_uc
* \see kalman_predict_P_uc
*/
HOT NONNULL
void kalman_predict_P_tuned_uc(register kalman16_uc_t *const kf, fix16_t lambda);
#endif // KALMAN_DISABLE_LAMBDA
/*!
* \brief Performs the time update / prediction step.
* \param[in] kf The Kalman Filter structure to predict with.
* \param[in] lambda Lambda factor (\c 0 < {\ref lambda} <= \c 1) to forcibly reduce prediction certainty. Smaller values mean larger uncertainty.
*
* This call assumes that the input covariance and variables are already set in the filter structure.
*
* \see kalman_predict_x
* \see kalman_predict_P
*/
NONNULL
EXTERN_INLINE_KALMAN void kalman_predict_uc(kalman16_uc_t *kf)
{
/************************************************************************/
/* Predict next state using system dynamics */
/* x = A*x */
/************************************************************************/
kalman_predict_x_uc(kf);
/************************************************************************/
/* Predict next covariance using system dynamics and input */
/* P = A*P*A' + B*Q*B' */
/************************************************************************/
kalman_predict_P_uc(kf);
}
/*!
* \brief Performs the continous-time filter time update / prediction step with integration.
* \param[in] kf The Kalman Filter structure to predict with.
* \param[in] deltaT The time differential (seconds)
*
* This call assumes that the input covariance and variables are already set in the filter structure.
*
* \see kalman_predict_x
* \see kalman_predict_P
*/
NONNULL
EXTERN_INLINE_KALMAN void kalman_cpredict_uc(kalman16_uc_t *kf, register fix16_t deltaT)
{
/************************************************************************/
/* Predict next state using system dynamics */
/* x = A*x */
/************************************************************************/
kalman_cpredict_x_uc(kf, deltaT);
/************************************************************************/
/* Predict next covariance using system dynamics and input */
/* P = A*P*A' + B*Q*B' */
/************************************************************************/
kalman_cpredict_P_uc(kf, deltaT);
}
#ifndef KALMAN_DISABLE_LAMBDA
/*!
* \brief Performs the time update / prediction step.
* \param[in] kf The Kalman Filter structure to predict with.
* \param[in] lambda Lambda factor (\c 0 < {\ref lambda} <= \c 1) to forcibly reduce prediction certainty. Smaller values mean larger uncertainty.
*
* This call assumes that the input covariance and variables are already set in the filter structure.
*
* \see kalman_predict_x
* \see kalman_predict_P_tuned
*/
HOT NONNULL
EXTERN_INLINE_KALMAN void kalman_predict_tuned_uc(kalman16_uc_t *kf, fix16_t lambda)
{
/************************************************************************/
/* Predict next state using system dynamics */
/* x = A*x */
/************************************************************************/
kalman_predict_x_uc(kf);
/************************************************************************/
/* Predict next covariance using system dynamics and input */
/* P = A*P*A' * 1/lambda^2 + B*Q*B' */
/************************************************************************/
kalman_predict_P_tuned_uc(kf, lambda);
}
#endif // KALMAN_DISABLE_LAMBDA
/*!
* \brief Performs the measurement update step.
* \param[in] kf The Kalman Filter structure to correct.
*/
HOT NONNULL
STATIC_INLINE void kalman_correct_uc(kalman16_uc_t *kf, kalman16_observation_t *kfm)
{
// just be careful, kid
kalman_correct((kalman16_t*)kf, kfm);
}
/*!
* \brief Gets a pointer to the state vector x.
* \param[in] kf The Kalman Filter structure
* \return The state vector x.
*/
LEAF RETURNS_NONNULL NONNULL HOT PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_state_vector_uc(kalman16_uc_t *kf)
{
return &(kf->x);
}
/*!
* \brief Gets a pointer to the state transition matrix A.
* \param[in] kf The Kalman Filter structure
* \return The state transition matrix A.
*/
LEAF RETURNS_NONNULL NONNULL HOT PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_state_transition_uc(kalman16_uc_t *kf)
{
return &(kf->A);
}
/*!
* \brief Gets a pointer to the system covariance matrix P.
* \param[in] kf The Kalman Filter structure
* \return The system covariance matrix.
*/
LEAF RETURNS_NONNULL NONNULL PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_system_covariance_uc(kalman16_uc_t *kf)
{
return &(kf->P);
}
/*!
* \brief Gets a pointer to the system process noise vector.
* \param[in] kf The Kalman Filter structure
* \return The process noise vector.
*/
LEAF RETURNS_NONNULL NONNULL PURE
EXTERN_INLINE_KALMAN mf16* kalman_get_system_process_noise_uc(kalman16_uc_t *kf)
{
return &(kf->Q);
}
#endif // KALMAN_DISABLE_UC
#undef EXTERN_INLINE_KALMAN
#endif