-
Notifications
You must be signed in to change notification settings - Fork 24
/
utils.py
448 lines (344 loc) · 16.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import os
import pickle
import networkx as nx
import time
import numpy as np
import scipy as sp
import pandas as pd
import torch
from collections import namedtuple
from copy import deepcopy
import src.envs.core as ising_env
from src.envs.utils import (SingleGraphGenerator, SpinBasis)
from src.agents.solver import Network, Greedy
####################################################
# TESTING ON GRAPHS
####################################################
def test_network(network, env_args, graphs_test,device=None, step_factor=1, batched=True,
n_attempts=50, return_raw=False, return_history=False, max_batch_size=None):
if batched:
return __test_network_batched(network, env_args, graphs_test, device, step_factor,
n_attempts, return_raw, return_history, max_batch_size)
else:
if max_batch_size is not None:
print("Warning: max_batch_size argument will be ignored for when batched=False.")
return __test_network_sequential(network, env_args, graphs_test, step_factor,
n_attempts, return_raw, return_history)
def __test_network_batched(network, env_args, graphs_test, device=None, step_factor=1,
n_attempts=50, return_raw=False, return_history=False, max_batch_size=None):
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.device(device)
# HELPER FUNCTION FOR NETWORK TESTING
acting_in_reversible_spin_env = env_args['reversible_spins']
if env_args['reversible_spins']:
# If MDP is reversible, both actions are allowed.
if env_args['spin_basis'] == SpinBasis.BINARY:
allowed_action_state = (0, 1)
elif env_args['spin_basis'] == SpinBasis.SIGNED:
allowed_action_state = (1, -1)
else:
# If MDP is irreversible, only return the state of spins that haven't been flipped.
if env_args['spin_basis'] == SpinBasis.BINARY:
allowed_action_state = 0
if env_args['spin_basis'] == SpinBasis.SIGNED:
allowed_action_state = 1
def predict(states):
qs = network(states)
if acting_in_reversible_spin_env:
if qs.dim() == 1:
actions = [qs.argmax().item()]
else:
actions = qs.argmax(1, True).squeeze(1).cpu().numpy()
return actions
else:
if qs.dim() == 1:
x = (states.squeeze()[:,0] == allowed_action_state).nonzero()
actions = [x[qs[x].argmax().item()].item()]
else:
disallowed_actions_mask = (states[:, :, 0] != allowed_action_state)
qs_allowed = qs.masked_fill(disallowed_actions_mask, -1000)
actions = qs_allowed.argmax(1, True).squeeze(1).cpu().numpy()
return actions
# NETWORK TESTING
results = []
results_raw = []
if return_history:
history = []
n_attempts = n_attempts if env_args["reversible_spins"] else 1
for j, test_graph in enumerate(graphs_test):
i_comp = 0
i_batch = 0
t_total = 0
n_spins = test_graph.shape[0]
n_steps = int(n_spins * step_factor)
test_env = ising_env.make("SpinSystem",
SingleGraphGenerator(test_graph),
n_steps,
**env_args)
print("Running greedy solver with +1 initialisation of spins...", end="...")
# Calculate the greedy cut with all spins initialised to +1
greedy_env = deepcopy(test_env)
greedy_env.reset(spins=np.array([1] * test_graph.shape[0]))
greedy_agent = Greedy(greedy_env)
greedy_agent.solve()
greedy_single_cut = greedy_env.get_best_cut()
greedy_single_spins = greedy_env.best_spins
print("done.")
if return_history:
actions_history = []
rewards_history = []
scores_history = []
best_cuts = []
init_spins = []
best_spins = []
greedy_cuts = []
greedy_spins = []
while i_comp < n_attempts:
if max_batch_size is None:
batch_size = n_attempts
else:
batch_size = min(n_attempts - i_comp, max_batch_size)
i_comp_batch = 0
if return_history:
actions_history_batch = [[None]*batch_size]
rewards_history_batch = [[None] * batch_size]
scores_history_batch = []
test_envs = [None] * batch_size
best_cuts_batch = [-1e3] * batch_size
init_spins_batch = [[] for _ in range(batch_size)]
best_spins_batch = [[] for _ in range(batch_size)]
greedy_envs = [None] * batch_size
greedy_cuts_batch = []
greedy_spins_batch = []
obs_batch = [None] * batch_size
print("Preparing batch of {} environments for graph {}.".format(batch_size,j), end="...")
for i in range(batch_size):
env = deepcopy(test_env)
obs_batch[i] = env.reset()
test_envs[i] = env
greedy_envs[i] = deepcopy(env)
init_spins_batch[i] = env.best_spins
if return_history:
scores_history_batch.append([env.calculate_score() for env in test_envs])
print("done.")
# Calculate the max cut acting w.r.t. the network
t_start = time.time()
# pool = mp.Pool(processes=16)
k = 0
while i_comp_batch < batch_size:
t1 = time.time()
# Note: Do not convert list of np.arrays to FloatTensor, it is very slow!
# see: https://github.com/pytorch/pytorch/issues/13918
# Hence, here we convert a list of np arrays to a np array.
obs_batch = torch.FloatTensor(np.array(obs_batch)).to(device)
actions = predict(obs_batch)
obs_batch = []
if return_history:
scores = []
rewards = []
i = 0
for env, action in zip(test_envs,actions):
if env is not None:
obs, rew, done, info = env.step(action)
if return_history:
scores.append(env.calculate_score())
rewards.append(rew)
if not done:
obs_batch.append(obs)
else:
best_cuts_batch[i] = env.get_best_cut()
best_spins_batch[i] = env.best_spins
i_comp_batch += 1
i_comp += 1
test_envs[i] = None
i+=1
k+=1
if return_history:
actions_history_batch.append(actions)
scores_history_batch.append(scores)
rewards_history_batch.append(rewards)
# print("\t",
# "Par. steps :", k,
# "Env steps : {}/{}".format(k/batch_size,n_steps),
# 'Time: {0:.3g}s'.format(time.time()-t1))
t_total += (time.time() - t_start)
i_batch+=1
print("Finished agent testing batch {}.".format(i_batch))
if env_args["reversible_spins"]:
print("Running greedy solver with {} random initialisations of spins for batch {}...".format(batch_size, i_batch), end="...")
for env in greedy_envs:
Greedy(env).solve()
cut = env.get_best_cut()
greedy_cuts_batch.append(cut)
greedy_spins_batch.append(env.best_spins)
print("done.")
if return_history:
actions_history += actions_history_batch
rewards_history += rewards_history_batch
scores_history += scores_history_batch
best_cuts += best_cuts_batch
init_spins += init_spins_batch
best_spins += best_spins_batch
if env_args["reversible_spins"]:
greedy_cuts += greedy_cuts_batch
greedy_spins += greedy_spins_batch
# print("\tGraph {}, par. steps: {}, comp: {}/{}".format(j, k, i_comp, batch_size),
# end="\r" if n_spins<100 else "")
i_best = np.argmax(best_cuts)
best_cut = best_cuts[i_best]
sol = best_spins[i_best]
mean_cut = np.mean(best_cuts)
if env_args["reversible_spins"]:
idx_best_greedy = np.argmax(greedy_cuts)
greedy_random_cut = greedy_cuts[idx_best_greedy]
greedy_random_spins = greedy_spins[idx_best_greedy]
greedy_random_mean_cut = np.mean(greedy_cuts)
else:
greedy_random_cut = greedy_single_cut
greedy_random_spins = greedy_single_spins
greedy_random_mean_cut = greedy_single_cut
print('Graph {}, best(mean) cut: {}({}), greedy cut (rand init / +1 init) : {} / {}. ({} attempts in {}s)\t\t\t'.format(
j, best_cut, mean_cut, greedy_random_cut, greedy_single_cut, n_attempts, np.round(t_total,2)))
results.append([best_cut, sol,
mean_cut,
greedy_single_cut, greedy_single_spins,
greedy_random_cut, greedy_random_spins,
greedy_random_mean_cut,
t_total/(n_attempts)])
results_raw.append([init_spins,
best_cuts, best_spins,
greedy_cuts, greedy_spins])
if return_history:
history.append([np.array(actions_history).T.tolist(),
np.array(scores_history).T.tolist(),
np.array(rewards_history).T.tolist()])
results = pd.DataFrame(data=results, columns=["cut", "sol",
"mean cut",
"greedy (+1 init) cut", "greedy (+1 init) sol",
"greedy (rand init) cut", "greedy (rand init) sol",
"greedy (rand init) mean cut",
"time"])
results_raw = pd.DataFrame(data=results_raw, columns=["init spins",
"cuts", "sols",
"greedy cuts", "greedy sols"])
if return_history:
history = pd.DataFrame(data=history, columns=["actions", "scores", "rewards"])
if return_raw==False and return_history==False:
return results
else:
ret = [results]
if return_raw:
ret.append(results_raw)
if return_history:
ret.append(history)
return ret
def __test_network_sequential(network, env_args, graphs_test, step_factor=1,
n_attempts=50, return_raw=False, return_history=False):
if return_raw or return_history:
raise NotImplementedError("I've not got to this yet! Used the batched test script (it's faster anyway).")
results = []
n_attempts = n_attempts if env_args["reversible_spins"] else 1
for i, test_graph in enumerate(graphs_test):
n_steps = int(test_graph.shape[0] * step_factor)
best_cut = -1e3
best_spins = []
greedy_random_cut = -1e3
greedy_random_spins = []
greedy_single_cut = -1e3
greedy_single_spins = []
times = []
test_env = ising_env.make("SpinSystem",
SingleGraphGenerator(test_graph),
n_steps,
**env_args)
net_agent = Network(network, test_env,
record_cut=False, record_rewards=False, record_qs=False)
greedy_env = deepcopy(test_env)
greedy_env.reset(spins=np.array([1] * test_graph.shape[0]))
greedy_agent = Greedy(greedy_env)
greedy_agent.solve()
greedy_single_cut = greedy_env.get_best_cut()
greedy_single_spins = greedy_env.best_spins
for k in range(n_attempts):
net_agent.reset(clear_history=True)
greedy_env = deepcopy(test_env)
greedy_agent = Greedy(greedy_env)
tstart = time.time()
net_agent.solve()
times.append(time.time() - tstart)
cut = test_env.get_best_cut()
if cut > best_cut:
best_cut = cut
best_spins = test_env.best_spins
greedy_agent.solve()
greedy_cut = greedy_env.get_best_cut()
if greedy_cut > greedy_random_cut:
greedy_random_cut = greedy_cut
greedy_random_spins = greedy_env.best_spins
# print('\nGraph {}, attempt : {}/{}, best cut : {}, greedy cut (rand init / +1 init) : {} / {}\t\t\t'.format(
# i + 1, k, n_attemps, best_cut, greedy_random_cut, greedy_single_cut),
# end="\r")
print('\nGraph {}, attempt : {}/{}, best cut : {}, greedy cut (rand init / +1 init) : {} / {}\t\t\t'.format(
i + 1, k, n_attempts, best_cut, greedy_random_cut, greedy_single_cut),
end=".")
results.append([best_cut, best_spins,
greedy_single_cut, greedy_single_spins,
greedy_random_cut, greedy_random_spins,
np.mean(times)])
return pd.DataFrame(data=results, columns=["cut", "sol",
"greedy (+1 init) cut", "greedy (+1 init) sol",
"greedy (rand init) cut", "greedy (rand init) sol",
"time"])
####################################################
# LOADING GRAPHS
####################################################
Graph = namedtuple('Graph', 'name n_vertices n_edges matrix bk_val bk_sol')
def load_graph(graph_dir, graph_name):
inst_loc = os.path.join(graph_dir, 'instances', graph_name+'.mc')
val_loc = os.path.join(graph_dir, 'bkvl', graph_name+'.bkvl')
sol_loc = os.path.join(graph_dir, 'bksol', graph_name+'.bksol')
vertices, edges, matrix = 0, 0, None
bk_val, bk_sol = None, None
with open(inst_loc) as f:
for line in f:
arr = list(map(int, line.strip().split(' ')))
if len(arr) == 2: # contains the number of vertices and edges
n_vertices, n_edges = arr
matrix = np.zeros((n_vertices,n_vertices))
else:
assert type(matrix)==np.ndarray, 'First line in file should define graph dimensions.'
i, j, w = arr[0]-1, arr[1]-1, arr[2]
matrix[ [i,j], [j,i] ] = w
with open(val_loc) as f:
bk_val = float( f.readline() )
with open(sol_loc) as f:
bk_sol_str = f.readline().strip()
bk_sol = np.array([int(x) for x in list(bk_sol_str)] + [ np.random.choice([0,1]) ]) # final spin is 'no-action'
return Graph(graph_name, n_vertices, n_edges, matrix, bk_val, bk_sol)
def load_graph_set(graph_save_loc):
graphs_test = pickle.load(open(graph_save_loc,'rb'))
def graph_to_array(g):
if type(g) == nx.Graph:
g = nx.to_numpy_array(g)
elif type(g) == sp.sparse.csr_matrix:
g = g.toarray()
return g
graphs_test = [graph_to_array(g) for g in graphs_test]
print('{} target graphs loaded from {}'.format(len(graphs_test), graph_save_loc))
return graphs_test
####################################################
# FILE UTILS
####################################################
def mk_dir(export_dir, quite=False):
if not os.path.exists(export_dir):
try:
os.makedirs(export_dir)
print('created dir: ', export_dir)
except OSError as exc: # Guard against race condition
if exc.errno != exc.errno.EEXIST:
raise
except Exception:
pass
else:
print('dir already exists: ', export_dir)