-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReplay_Buffer.py
113 lines (89 loc) · 4.07 KB
/
Replay_Buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#Credit to mynkpl1998
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random
from collections import namedtuple, deque
import matplotlib.pyplot as plt
from parameters import *
class ReplayBuffer:
"""
Fixed size buffer to store experience tuples
"""
def __init__(self, action_size, buffer_size, batch_size, device, seed):
"""
Params:
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): random seed
"""
#self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state","done"])
self.seed = random.seed(seed)
self.device = device
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory"""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory"""
experiences = random.sample(self.memory, k =self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(self.device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(self.device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(self.device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(self.device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(self.device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory"""
return len(self.memory)
class ReplayBuffer_LSTM:
def __init__(self, buffer_size, sequence_length=1, batch_size=32, device='cpu', seed=42):
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experience = deque(maxlen=buffer_size)
self.seed = random.seed(seed)
self.sequence_length = sequence_length
self.device = device
self.episode_buffer = []
self.mdp_tuple = namedtuple("MDP_Tuple", field_names=["state", "action", "reward", "next_state","done"])
def add(self, state, action, reward, next_state, done):
self.episode_buffer.append(self.mdp_tuple(state, action, reward, next_state, done))
if done == True:
self.experience.append(np.vstack(self.episode_buffer))
self.episode_buffer = []
def sample(self):
episodes = random.sample(self.experience, k=self.batch_size)
# episodes is list of list: batch_size x episode_len
batch_states = []
batch_actions = []
batch_rewards = []
batch_next_states = []
batch_dones = []
for episode in episodes:
ep_len = len(episode)
end = max(ep_len - self.sequence_length, 1)
seq_start = np.random.randint(0, end)
trajectory = episode[seq_start : seq_start + self.sequence_length]
states = torch.from_numpy(np.stack([t[0] for t in trajectory if t is not None])).float().to(self.device)
actions = torch.from_numpy(np.stack([t[1] for t in trajectory if t is not None])).long().to(self.device)
rewards = torch.from_numpy(np.stack([t[2] for t in trajectory if t is not None])).float().to(self.device)
next_states = torch.from_numpy(np.stack([t[3] for t in trajectory if t is not None])).float().to(self.device)
dones = torch.from_numpy(np.stack([t[4] for t in trajectory if t is not None])).float().to(self.device)
batch_states.append(states)
batch_actions.append(actions)
batch_rewards.append(rewards)
batch_next_states.append(next_states)
batch_dones.append(dones)
batch_states = np.array(batch_states)
batch_actions = np.array(batch_actions)
batch_rewards = np.array(batch_rewards)
batch_next_states = np.array(batch_next_states)
batch_dones = np.array(batch_dones)
return batch_states, batch_actions, batch_rewards, batch_next_states, batch_dones
def __len__(self):
return len(self.experience)