-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.go
186 lines (159 loc) · 5.17 KB
/
evaluate.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
package main
import (
"math"
"strings"
"github.com/golang/geo/r3"
"github.com/pkg/errors"
"go.viam.com/rdk/logging"
"go.viam.com/rdk/motionplan"
"go.viam.com/rdk/referenceframe"
"go.viam.com/rdk/spatialmath"
"gonum.org/v1/gonum/floats"
)
const defaultEpsilon = 1e-2
var logger logging.Logger = logging.NewLogger("motion-testing")
var scene *motionplan.PlanRequest
var allScenes = map[int]func() (*motionplan.PlanRequest, error){
// arm scenes
1: scene1,
2: scene2,
3: scene3,
4: scene4,
5: scene5,
6: scene6,
7: scene7,
8: scene8,
9: scene9,
10: scene10,
11: scene11,
12: scene12,
// base scenes
13: scene13,
14: scene14,
15: scene15,
16: scene16,
17: scene17,
18: scene18,
}
var baseSceneStart = 13
const ptgDistStartIdx = 2
const ptgDistEndIdx = 3
// initScene takes a scene number and loads the relevant information into memory
func initScene(sceneNum int) (err error) {
if sceneFn, ok := allScenes[sceneNum]; ok {
scene, err = sceneFn()
if err != nil {
return
}
return
}
return errors.Errorf("scene %d does not exist", sceneNum)
}
func interpolateInputs(from, to []referenceframe.Input, by float64) []referenceframe.Input {
var newVals []referenceframe.Input
for i, j1 := range from {
newVals = append(newVals, referenceframe.Input{j1.Value + ((to[i].Value - j1.Value) * by)})
}
return newVals
}
func evaluateSolution(solution [][]float64, sceneNum int) (float64, float64, float64, error) {
var l2Score, lineScore, oScore, totalLineDist float64
var err error
if err := initScene(sceneNum); err != nil {
return -1, -1, -1, err
}
var poseStart, poseEnd spatialmath.Pose
sceneFrame := scene.FrameSystem.Frame("test_base")
if sceneNum < baseSceneStart {
sceneFrame = scene.FrameSystem.Frame("arm")
poseStart, err = sceneFrame.Transform(referenceframe.FloatsToInputs(solution[0]))
if poseStart == nil || (err != nil && !strings.Contains(err.Error(), referenceframe.OOBErrString)) {
return -1, -1, -1, err
}
poseEnd, err = sceneFrame.Transform(referenceframe.FloatsToInputs(solution[len(solution)-1]))
if poseEnd == nil || (err != nil && !strings.Contains(err.Error(), referenceframe.OOBErrString)) {
return -1, -1, -1, err
}
totalLineDist = poseStart.Point().Sub(poseEnd.Point()).Norm()
}
// For each step
for i := 0; i < len(solution)-1; i++ {
l2Score += L2Distance(solution[i], solution[i+1])
// Check linear and orientation excursion every 2 degrees of joint movement
if sceneNum < baseSceneStart {
nSteps := getSteps(solution[i], solution[i+1])
for j := 1; j <= nSteps; j++ {
step := interpolateInputs(
referenceframe.FloatsToInputs(solution[i]),
referenceframe.FloatsToInputs(solution[i+1]),
float64(j)/float64(nSteps),
)
pose, err := sceneFrame.Transform(step)
if pose == nil || (err != nil && !strings.Contains(err.Error(), referenceframe.OOBErrString)) {
return -1, -1, -1, err
}
lineScore += distToLine(poseStart.Point(), poseEnd.Point(), pose.Point())
oScore += orientScore(poseStart.Orientation(), poseEnd.Orientation(), pose.Orientation())
}
} else {
lineScore += math.Abs(solution[i][ptgDistEndIdx] - solution[i][ptgDistStartIdx])
}
}
if totalLineDist != 0 {
lineScore = lineScore / totalLineDist
}
return l2Score, lineScore, oScore, nil
}
// L2Distance returns the L2 normalized difference between two equal length arrays.
func L2Distance(q1, q2 []float64) float64 {
diff := make([]float64, len(q1))
for i := 0; i < len(q1); i++ {
diff[i] = q1[i] - q2[i]
}
// 2 is the L value returning a standard L2 Normalization
return floats.Norm(diff, 2)
}
// L2Distance returns the L2 normalized difference between two equal length arrays.
func distToLine(pt1, pt2, query r3.Vector) float64 {
ab := pt1.Sub(pt2)
av := query.Sub(pt2)
if av.Dot(ab) <= 0.0 { // Point is lagging behind start of the segment, so perpendicular distance is not viable.
return av.Norm() // Use distance to start of segment instead.
}
bv := query.Sub(pt1)
if bv.Dot(ab) >= 0.0 { // Point is advanced past the end of the segment, so perpendicular distance is not viable.
return bv.Norm()
}
dist := (ab.Cross(av)).Norm() / ab.Norm()
if dist < defaultEpsilon {
return 0.
}
return dist
}
// How many steps to step between configs 2 degrees at a time
func getSteps(q1, q2 []float64) int {
nSteps := 1
for i, j1 := range q1 {
// convert to degrees
// jDiff := (180 * math.Abs(j1 - q2[i]))/math.Pi
jDiff := math.Abs(j1 - q2[i])
if math.Ceil(jDiff/2.) > float64(nSteps) {
nSteps = int(math.Ceil(jDiff / 2.))
}
}
return nSteps
}
func orientDist(o1, o2 spatialmath.Orientation) float64 {
return math.Sqrt(spatialmath.QuatToR3AA(spatialmath.OrientationBetween(o1, o2).Quaternion()).Norm2())
}
func orientScore(start, end, query spatialmath.Orientation) float64 {
origDist := math.Max(orientDist(start, end), defaultEpsilon)
sDist := math.Max(orientDist(start, query), defaultEpsilon)
gDist := 0.
// If origDist is less than or equal to defaultEpsilon, then the starting and ending orientations are the same and we do not need
// to compute the distance to the ending orientation
if origDist > defaultEpsilon {
gDist = orientDist(end, query)
}
return (sDist + gDist) - origDist
}