forked from salesforce/simpletod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
793 lines (682 loc) · 29.5 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer
import sys, os
import json
from collections import Counter
import sqlite3
import ipdb
import random
from utils.multiwoz.nlp import normalize, normalize_for_sql
import pprint
import logging
import time
from colorama import Fore, Back, Style
logging.basicConfig(level=logging.INFO)
logging.getLogger("transformers.file_utils").setLevel(logging.ERROR)
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
logging.getLogger("transformers.modeling_gpt2").setLevel(logging.ERROR)
logging.getLogger("transformers.configuration_utils").setLevel(logging.ERROR)
logging.getLogger("transformers.tokenization_utils").setLevel(logging.ERROR)
class MultiWozDB(object):
# loading databases
domains = ['restaurant', 'hotel', 'attraction', 'train', 'taxi', 'hospital'] # , 'police']
dbs = {}
CUR_DIR = os.path.dirname(__file__)
hotel_info = ['name', 'area', 'internet', 'parking', 'phone', 'postcode', 'pricerange', 'stars', 'takesbookings', 'type', 'address']
train_info = ["arriveBy", "day", "departure", "destination", "duration", "leaveAt", "price", "trainID"]
restaurant_info = ["address", "area", "food", "id", "introduction", "name", "phone", "postcode", "pricerange", "signature","type"]
attraction_info = ["address", "area", "entrance fee", "id", "name", "openhours", "phone", "postcode", "pricerange", "type"]
taxi_info = []
database_keys = {
'hotel': hotel_info,
'train': train_info,
'restaurant': restaurant_info,
'attraction': attraction_info
}
for domain in domains:
db = os.path.join('utils/multiwoz/db/{}-dbase.db'.format(domain))
conn = sqlite3.connect(db)
c = conn.cursor()
dbs[domain] = c
def queryResultVenues(self, domain, turn, real_belief=False):
# query the db
sql_query = "select {} from {}".format(','.join(self.database_keys[domain]), domain)
# sql_query = "select * from {}".format(domain)
if real_belief == True:
items = turn.items()
else:
items = turn['metadata'][domain]['semi'].items()
flag = True
for key, val in items:
if val == "" or val == "dontcare" or val == 'not mentioned' or val == "don't care" or val == "dont care" or val == "do n't care":
pass
if 'book' in key:
pass
else:
if flag:
sql_query += " where "
val2 = val.replace("'", "''")
val2 = normalize_for_sql(val2)
if key == 'leaveAt':
sql_query += r" " + key + " > " + r"'" + val2 + r"'"
elif key == 'arriveBy':
sql_query += r" " + key + " < " + r"'" + val2 + r"'"
else:
sql_query += r" " + key + "=" + r"'" + val2 + r"'"
flag = False
else:
val2 = val.replace("'", "''")
val2 = normalize_for_sql(val2)
if key == 'leaveAt':
sql_query += r" and " + key + " > " + r"'" + val2 + r"'"
elif key == 'arriveBy':
sql_query += r" and " + key + " < " + r"'" + val2 + r"'"
else:
sql_query += r" and " + key + "=" + r"'" + val2 + r"'"
try: # "select * from attraction where name = 'queens college'"
results = self.dbs[domain].execute(sql_query).fetchall()
print(sql_query)
results_dic = []
for a in results:
a_dic = dict.fromkeys(self.database_keys[domain])
for k, v in zip(self.database_keys[domain], a):
a_dic[k] = v
results_dic.append(a_dic)
print(results_dic)
return results_dic
except:
return [] # TODO test it
def queryResultVenues_new(self, domain, turn, real_belief=False):
# query the db
# sql_query = "select * from {}".format(domain)
sql_query = "select {} from {}".format(','.join(self.database_keys[domain]), domain)
if real_belief == True:
items = turn.items()
else:
items = turn['metadata'][domain]['semi'].items()
flag = True
for key, val in items:
if key == 'leaveat':
key = 'leaveAt'
if key == 'arriveby':
key = 'arriveBy'
if val == "" or val == "dontcare" or val == 'not mentioned' or val == "don't care" or val == "dont care" or val == "do n't care":
pass
if 'book' in key:
pass
else:
if flag:
sql_query += " where "
val2 = val.replace("'", "''")
val2 = normalize_for_sql(val2)
# val2 = val2.replace('marys', r"mary's")
# val2 = val2.replace('restaurant 17', 'restaurant one seven')
# val2 = val2.replace('christ college', r"christ's college")
# val2 = val2.replace('city centre north bed and breakfast', 'city centre north b and b')
if key == 'name' and val2 in ['the cow pizza kitchen and bar',
'cow pizza kitchen and bar',
'wankworth house']:
continue
if key == 'leaveAt':
sql_query += r" " + key + " > " + r"'" + val2 + r"'"
elif key == 'arriveBy':
sql_query += r" " + key + " < " + r"'" + val2 + r"'"
else:
sql_query += r" " + key + "=" + r"'" + val2 + r"'"
flag = False
else:
val2 = val.replace("'", "''")
val2 = normalize_for_sql(val2)
# val2 = val2.replace('marys', r"mary's")
# val2 = val2.replace('restaurant 17', 'restaurant one seven')
# val2 = val2.replace('christ college', r"christ's college")
# val2 = val2.replace('city centre north bed and breakfast', 'city centre north b and b')
if key == 'name' and val2 in ['the cow pizza kitchen and bar',
'cow pizza kitchen and bar',
'wankworth house']:
continue
if key == 'leaveAt':
sql_query += r" and " + key + " > " + r"'" + val2 + r"'"
elif key == 'arriveBy':
sql_query += r" and " + key + " < " + r"'" + val2 + r"'"
else:
sql_query += r" and " + key + "=" + r"'" + val2 + r"'"
if ('name', 'restaurant one seven') in list(turn.items()):
ipdb.set_trace()
try: # "select * from attraction where name = 'queens college'"
# return self.dbs[domain].execute(sql_query).fetchall()
results = self.dbs[domain].execute(sql_query).fetchall()
# print(sql_query)
results_dic = []
for a in results:
a_dic = dict.fromkeys(self.database_keys[domain])
for k, v in zip(self.database_keys[domain], a):
a_dic[k] = v
results_dic.append(a_dic)
# print(results_dic)
return results_dic
except:
return [] # TODO test it
def get_belief_new(sent):
if '<|belief|>' in sent:
tmp = sent.strip(' ').split('<|belief|>')[-1].split('<|action|>')[0]
# elif 'belief.' in sent:
# tmp = sent.strip(' ').split('<belief>')[-1].split('<action>')[0]
# elif 'belief' not in sent:
# return []
else:
return []
# else:
# raise TypeError('unknown belief separator')
tmp = tmp.strip(' .,')
# assert tmp.endswith('<endofbelief>')
tmp = tmp.replace('<|endofbelief|>', '')
tmp = tmp.replace('<|endoftext|>', '')
belief = tmp.split(',')
new_belief = []
for bs in belief:
bs = bs.strip(' .,')
if bs not in new_belief:
new_belief.append(bs)
return new_belief
def get_belief_new_openaigpt(sent):
if '< | belief | >' in sent:
tmp = sent.strip(' ').split('< | belief | >')[-1].split('< | action | >')[0]
# elif 'belief.' in sent:
# tmp = sent.strip(' ').split('<belief>')[-1].split('<action>')[0]
# elif 'belief' not in sent:
# return []
else:
return []
# else:
# raise TypeError('unknown belief separator')
tmp = tmp.strip(' .,')
# assert tmp.endswith('<endofbelief>')
tmp = tmp.replace('< | endofbelief | >', '')
tmp = tmp.replace('<|endoftext|>', '')
belief = tmp.split(',')
new_belief = []
for bs in belief:
bs = bs.strip(' .,')
if bs not in new_belief:
new_belief.append(bs)
return new_belief
def get_belief_new_dbsearch(sent):
if '<|belief|>' in sent:
tmp = sent.strip(' ').split('<|belief|>')[-1].split('<|endofbelief|>')[0]
# elif 'belief.' in sent:
# tmp = sent.strip(' ').split('<belief>')[-1].split('<action>')[0]
# elif 'belief' not in sent:
# return []
else:
return []
# else:
# raise TypeError('unknown belief separator')
tmp = tmp.strip(' .,')
# assert tmp.endswith('<endofbelief>')
tmp = tmp.replace('<|endofbelief|>', '')
tmp = tmp.replace('<|endoftext|>', '')
belief = tmp.split(',')
new_belief = []
for bs in belief:
bs = bs.strip(' .,')
if bs not in new_belief:
new_belief.append(bs)
return new_belief
def get_action_new_openaigpt(sent):
if '< | belief | >' in sent:
tmp = sent.split('< | belief | >')[-1].split('< | response | >')[0].split('< | action | >')[-1].strip()
elif '< | action | >' in sent:
tmp = sent.split('< | response | >')[0].split('< | action | >')[-1].strip()
else:
return []
tmp = tmp.strip(' .,')
# if not tmp.endswith('<endofaction>'):
# ipdb.set_trace()
tmp = tmp.replace('< | endofaction | >', '')
tmp = tmp.replace('< | endofbelief | >', '')
tmp = tmp.replace('<|endoftext|>', '')
action = tmp.split(',')
new_action = []
for act in action:
if act == '':
continue
act = act.strip(' .,')
if act not in new_action:
act = act.replace('i d', 'id')
new_action.append(act)
return new_action
def get_action_new(sent):
if '<|action|>' not in sent:
return []
elif '<|belief|>' in sent:
tmp = sent.split('<|belief|>')[-1].split('<|response|>')[0].split('<|action|>')[-1].strip()
elif '<|action|>' in sent:
tmp = sent.split('<|response|>')[0].split('<|action|>')[-1].strip()
else:
return []
tmp = tmp.strip(' .,')
# if not tmp.endswith('<endofaction>'):
# ipdb.set_trace()
tmp = tmp.replace('<|endofaction|>', '')
tmp = tmp.replace('<|endoftext|>', '')
action = tmp.split(',')
new_action = []
for act in action:
if act == '':
continue
act = act.strip(' .,')
if act not in new_action:
new_action.append(act)
return new_action
def get_response_new(sent):
if '<|response|>' in sent:
tmp = sent.split('<|belief|>')[-1].split('<|action|>')[-1].split('<|response|>')[-1]
else:
return ''
# if '<belief>' in sent:
# tmp = sent.split('<belief>')[-1].split('<action>')[-1].split('<response>')[-1]
# elif '<action>' in sent:
# tmp = sent.split('<action>')[-1].split('<response>')[-1]
# elif '<response>' in sent:
# tmp = sent.split('<response>')[-1]
# else:
# tmp = sent
tmp = tmp.strip(' .,')
# assert tmp.endswith('<endofresponse>')
tmp = tmp.replace('<|endofresponse|>', '')
tmp = tmp.replace('<|endoftext|>', '')
tokens = tokenizer.encode(tmp)
new_tokens = []
for tok in tokens:
# if tok in break_tokens:
if tok in tokenizer.encode(tokenizer.eos_token):
continue
new_tokens.append(tok)
# ipdb.set_trace()
response = tokenizer.decode(new_tokens).strip(' ,.')
return response
def convert_belief(belief):
dic = {}
for bs in belief:
if bs in [' ', '']:
continue
domain = bs.split(' ')[0]
slot = bs.split(' ')[1]
if slot == 'book':
slot = ' '.join(bs.split(' ')[1:3])
value = ' '.join(bs.split(' ')[3:])
else:
value = ' '.join(bs.split(' ')[2:])
if domain not in dic:
dic[domain] = {}
try:
dic[domain][slot] = value
except:
print(domain)
print(slot)
return dic
def get_db_text(belief_domain, dom, only_match=False):
db_text_tmp = []
# for dom in belief_domain:
if dom not in ['restaurant', 'hotel', 'attraction', 'train']:
db_text_tmp = ''
domain_match = len(multiwoz_db.queryResultVenues_new(dom, belief_domain[dom], real_belief=True))
if dom != 'train':
if domain_match >= 5:
domain_match_text = '>=5'
else:
domain_match_text = '={}'.format(domain_match)
elif dom == 'train':
if domain_match == 0:
domain_match_text = '=0'
elif domain_match == 2:
domain_match_text = '<3'
elif domain_match == 5:
domain_match_text = '<6'
elif domain_match == 10:
domain_match_text = '<11'
elif domain_match == 40:
domain_match_text = '<41'
else:
domain_match_text = '>40'
# if 'fail_book' in goal[dom]:
# for item in goal[dom]['fail_book'].items():
# if item in belief_book_domain[dom].items():
# domain_book_text = 'not available'
# break
# else:
# domain_book_text = 'available'
# else:
# domain_book_text = 'available'
if domain_match == 0:
domain_book_text = 'not available'
else:
domain_book_text = 'available'
# if USE_DB_BOOK_DYNAMIC:
if only_match:
db_text_tmp.append('{} match{}'.format(dom, domain_match_text))
else:
db_text_tmp.append('{} match{} booking={}'.format(dom, domain_match_text, domain_book_text))
return db_text_tmp
def lexicalize_train(delex_response, db_results, turn_beliefs, turn_domain):
if len(db_results) > 0:
sample = random.sample(db_results, k=1)[0]
value_count = len(db_results)
else:
# domain = list(beliefs.keys())[0]
sample = turn_beliefs[turn_domain]
value_count = 0
# print(sample)
lex_response = delex_response
if 'from [value_place] to [value_place]' in delex_response:
departure = sample['departure']
destination = sample['destination']
lex_response = lex_response.replace('from [value_place] to [value_place]', 'from {} to {}'.format(departure, destination))
if 'from [value_place] on [value_day]' in delex_response:
departure = sample['departure']
day = sample['day']
lex_response = lex_response.replace('from [value_place] on [value_day]', 'from {} on {}'.format(departure, day))
if 'from [value_place]' in delex_response:
departure = sample['departure']
# destination = sample['destination']
lex_response = lex_response.replace('from [value_place]', 'from {}'.format(departure))
if 'leaving [value_place] at [value_day]' in delex_response:
departure = sample['departure']
day = sample['day']
lex_response = lex_response.replace('leaving [value_place] at [value_day]', 'leaving {} at {}'.format(departure, day))
if 'leaving [value_place] at [value_time]' in delex_response:
leaveat = sample['leaveAt']
departure = sample['departure']
lex_response = lex_response.replace('leaving [value_place] at [value_time]', 'leaving {} at {}'.format(departure, leaveat))
if 'leaves [value_place] at [value_time]' in delex_response:
leaveat = sample['leaveAt']
departure = sample['departure']
lex_response = lex_response.replace('leaves [value_place] at [value_time]', 'leaves {} at {}'.format(departure, leaveat))
if 'leaves at [value_time]' in delex_response:
if 'leaveAt' in sample:
leaveat = sample['leaveAt']
lex_response = lex_response.replace('leaves at [value_time]', 'leaves at {}'.format(leaveat))
if 'other at [value_time]' in delex_response:
leaveat = sample['leaveAt']
lex_response = lex_response.replace('other at [value_time]', 'other at {}'.format(leaveat))
if 'arrives in [value_place] at [value_time]' in delex_response:
arriveby = sample['arriveBy']
destination = sample['destination']
lex_response = lex_response.replace('arrives in [value_place] at [value_time]', 'arrives in {} at {}'.format(destination, arriveby))
if 'arrives at [value_time]' in delex_response:
arriveby = sample['arriveBy']
lex_response = lex_response.replace('arrives at [value_time]', 'arrives at {}'.format(arriveby))
if '[value_count] of these' in delex_response:
value_count = 'one'
lex_response = lex_response.replace('[value_count] of these', value_count)
if '[value_count] minutes' in delex_response:
lex_response = lex_response.replace('[value_count] minutes', sample['duration'])
if '[value_count]' in delex_response:
value_count = str(value_count)
lex_response = lex_response.replace('[value_count]', value_count)
if 'leaving [value_place]' in delex_response:
departure = sample['departure']
lex_response = lex_response.replace('leaving [value_place]', 'leaving {}'.format(departure))
if 'leaves [value_place]' in delex_response:
departure = sample['departure']
lex_response = lex_response.replace('leaves [value_place]', 'leaves {}'.format(departure))
if 'arrives in [value_place]' in delex_response:
destination = sample['destination']
lex_response = lex_response.replace('arrives in [value_place]', 'arrives in {}'.format(destination))
if '[train_id]' in delex_response:
train_id = sample['trainID']
lex_response = lex_response.replace('[train_id]', train_id)
if '[value_day]' in delex_response:
train_day = sample['day']
lex_response = lex_response.replace('[value_day]', train_day)
if '[value_price]' in delex_response:
train_price = sample['price']
lex_response = lex_response.replace('[value_price]', train_price)
if '[train_reference]' in delex_response:
random_number = random.randint(10000,99999)
lex_response = lex_response.replace('[train_reference]', str(random_number))
return lex_response
def lexicalize_hotel(delex_response, db_results, turn_beliefs, turn_domain):
if len(db_results) > 0:
sample = random.sample(db_results, k=1)[0]
value_count = len(db_results)
else:
# ipdb.set_trace()
# domain = list(beliefs.keys())[0]
sample = turn_beliefs[turn_domain]
value_count = 0
# print(sample)
lex_response = delex_response
try:
if '[hotel_name]' in delex_response:
lex_response = lex_response.replace('[hotel_name]', sample['name'])
if '[hotel_address]' in delex_response:
lex_response = lex_response.replace('[hotel_address]', sample['address'])
if '[value_area]' in delex_response:
lex_response = lex_response.replace('[value_area]', sample['area'])
if 'starting [value_day]' in delex_response:
lex_response = lex_response.replace('starting [value_day]', 'starting {}'.format(beliefs['book day']))
if '[value_pricerange]' in delex_response:
lex_response = lex_response.replace('[value_pricerange]', sample['pricerange'])
if '[value_count] star' in delex_response:
lex_response = lex_response.replace('[value_count] star', '{} star'.format(sample['stars']))
if '[value_count]' in delex_response:
lex_response = lex_response.replace('[value_count]', str(value_count))
if '[hotel_reference]' in delex_response:
random_number = random.randint(10000, 99999)
lex_response = lex_response.replace('[hotel_reference]', str(random_number))
if 'starting [value_day]' in delex_response:
lex_response = lex_response.replace('starting [value_day]', 'starting {}'.format(beliefs['book day']))
if '[value_count] people' in delex_response:
lex_response = lex_response.replace('[value_count] people', '{} people'.format(beliefs['book people']))
if '[value_count] nights' in delex_response:
lex_response = lex_response.replace('[value_count] nights', '{} nights'.format(beliefs['book stay']))
except:
ipdb.set_trace()
return lex_response
def get_turn_domain_old(b, a):
tmp = {}
turn_domain = None
if a == b:
turn_domain = list(a.keys())[0]
# elif len(b.keys()) > len(a.keys()):
# turn_domain = list(set(b) - set(a))[0]
else:
for domain in b.keys():
if domain not in a:
turn_domain = domain
tmp = b
break
tmp = {k: b[domain][k] for k in set(b[domain]) - set(a[domain])}
if tmp != {}:
turn_domain = domain
break
if not turn_domain:
ipdb.set_trace()
print('domain change')
print('chane', tmp)
print(b)
print(a)
# domain = list(tmp.keys())
# if len(domain) > 1:
# raise TypeError()
# elif len(domain) == 0:
# domain = list(a.keys())[0]
# else:
# domain = domain[0]
return turn_domain
def get_turn_domain(beliefs, q):
for k in beliefs.keys():
if k not in q:
q.append(k)
turn_domain = k
return turn_domain
return q[-1]
pp = pprint.PrettyPrinter(indent=4)
prev_beliefs = {}
domain_queue = []
if __name__ == '__main__':
print('\33]0;SimpleTOD\a', end='')
sys.stdout.flush()
model_checkpoint = sys.argv[1]
decoding = sys.argv[2]
if decoding == 'nucleus':
TOP_P = float(sys.argv[3])
delay = 0.5
multiwoz_db = MultiWozDB()
print('\nLoading Model', end="")
if 'openai' in model_checkpoint:
tokenizer = OpenAIGPTTokenizer.from_pretrained(model_checkpoint)
model = OpenAIGPTLMHeadModel.from_pretrained(model_checkpoint)
else:
tokenizer = GPT2Tokenizer.from_pretrained(model_checkpoint)
model = GPT2LMHeadModel.from_pretrained(model_checkpoint)
# model.load_state_dict(torch.load(model_checkpoint))
model.eval()
model.to('cuda')
break_tokens = tokenizer.encode(tokenizer.eos_token) + tokenizer.encode('?') + tokenizer.encode('!')
# break_tokens = tokenizer.encode(tokenizer.eos_token)
MAX_LEN = model.config.n_ctx
if 'openai-gpt' in model_checkpoint:
tokenizer.add_special_tokens({'bos_token': '<|endoftext|>'})
tokenizer.add_special_tokens({'eos_token': '<|endoftext|>'})
sample = 1
print()
print(Fore.MAGENTA + '\nSimpleTOD is ready to chat. What would you like to ask?' + Style.RESET_ALL)
# history = []
context = ''
input_text = ''
turn = 0
# dbmatch = 0
while True:
print(Fore.GREEN)
raw_text = input('You: ')
print(Style.RESET_ALL)
input_text = raw_text.replace('you> ', '')
if input_text in ['q', 'quit']:
break
user = '<|user|> {}'.format(input_text)
context = context + ' ' + user
text = '<|endoftext|> <|context|> {} <|endofcontext|>'.format(context)
# print(context)
text = text.strip()
indexed_tokens = tokenizer.encode(text)
if len(indexed_tokens) > MAX_LEN:
indexed_tokens = indexed_tokens[-1*MAX_LEN:]
# Convert indexed tokens in a PyTorch tensor
tokens_tensor = torch.tensor([indexed_tokens])
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
predicted_index = indexed_tokens[-1]
if decoding == 'nucleus':
sample_output = model.generate(
tokens_tensor,
do_sample=True,
max_length=MAX_LEN,
top_p=TOP_P,
top_k=0
)
elif decoding == 'greedy':
sample_output = model.generate(
tokens_tensor,
max_length=MAX_LEN,
do_sample=False
)
predicted_text = tokenizer.decode(sample_output[0], skip_special_tokens=True)
print("Predicted ", predicted_text)
with torch.no_grad():
while predicted_index not in break_tokens:
outputs = model(tokens_tensor)
predictions = outputs[0]
predicted_index = torch.argmax(predictions[0, -1, :]).item()
indexed_tokens += [predicted_index]
tokens_tensor = torch.tensor([indexed_tokens]).to('cuda')
if len(indexed_tokens) > MAX_LEN:
break
if tokenizer.decode(indexed_tokens).endswith('<|endofbelief|>'):
break
tmp_pred = tokenizer.decode(indexed_tokens)
belief_text = get_belief_new_dbsearch(tmp_pred)
print("TP PRED", tmp_pred)
print("BElief text", belief_text)
beliefs = convert_belief(belief_text)
domain = ""
if beliefs:
# domain = list(beliefs.keys())[0]
domain = get_turn_domain(beliefs, domain_queue)
if 'db' in model_checkpoint:
if 'dbnmatch' in model_checkpoint:
only_match = True
db_text_tmp = get_db_text(beliefs, dom=domain, only_match=only_match)
else:
db_text_tmp = get_db_text(beliefs, dom=domain)
db_text = ' <|dbsearch|> {} <|endofdbsearch|>'.format(' , '.join(db_text_tmp))
text = tmp_pred + db_text
else:
text = tmp_pred
# print(text)
# continue generation after creating db
indexed_tokens = tokenizer.encode(text)
if len(indexed_tokens) > MAX_LEN:
indexed_tokens = indexed_tokens[-1 * MAX_LEN:]
# Convert indexed tokens in a PyTorch tensor
tokens_tensor = torch.tensor([indexed_tokens])
# If you have a GPU, put everything on cuda
tokens_tensor = tokens_tensor.to('cuda')
predicted_index = indexed_tokens[-1]
truncate_action = False
# Predict all tokens
with torch.no_grad():
while predicted_index not in break_tokens:
outputs = model(tokens_tensor)
predictions = outputs[0]
predicted_index = torch.argmax(predictions[0, -1, :]).item()
indexed_tokens += [predicted_index]
if len(indexed_tokens) > MAX_LEN:
break
predicted_text = tokenizer.decode(indexed_tokens)
if '<|action|>' in predicted_text:
generated_actions = predicted_text.split('<|action|>')[-1].split('<|endofaction|>')[0].split(',')
new_actions = []
for a in generated_actions:
if a in ['', ' ']:
continue
new_actions.append(a.strip())
len_actions = len(new_actions)
if len(list(set(new_actions))) > len(new_actions) or (len_actions > 10 and not truncate_action):
# ipdb.set_trace()
actions = '<|action|> {} <|endofaction|>'.format(' , '.join(list(set(new_actions))))
indexed_tokens = tokenizer.encode('{} {}'.format(predicted_text.split('<|action|>')[0], actions))
# print('action truncated')
truncate_action = True
tokens_tensor = torch.tensor([indexed_tokens]).to('cuda')
predicted_text = tokenizer.decode(indexed_tokens)
action_text = get_action_new(predicted_text)
response_text = get_response_new(predicted_text)
print("Predicted final ", predicted_text)
lex_response = ""
if domain:
db_results = multiwoz_db.queryResultVenues_new(domain, beliefs[domain], real_belief=True)
if domain == 'train':
lex_response = lexicalize_train(response_text, db_results, beliefs, turn_domain=domain)
elif domain == 'hotel':
lex_response = lexicalize_hotel(response_text, db_results, beliefs, turn_domain=domain)
else:
ipdb.set_trace()
raise TypeError('unknown domain')
delex_system = '<|system|> {}'.format(response_text)
context = context + ' ' + delex_system
print("Context: ", context)
if lex_response:
system = '<|system|> {}'.format(lex_response)
print(Fore.CYAN + 'SimpleTOD: ', end="")
for a in lex_response.split(' '):
print(a + ' ', end="")
sys.stdout.flush()
time.sleep(delay)
print(Style.RESET_ALL)
print(Fore.YELLOW + 'belief: {}'.format(beliefs) + Style.RESET_ALL)
print(Style.RESET_ALL)
turn += 1
prev_beliefs = beliefs