forked from JoshDullen/zlib.net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinftrees.cs
executable file
·400 lines (352 loc) · 14.9 KB
/
inftrees.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
// inftrees.cs -- generate Huffman trees for efficient decoding
// Copyright (C) 1995-2010 Mark Adler
// Copyright (C) 2007-2011 by the Authors
// For conditions of distribution and use, see copyright notice in License.txt
using System;
namespace Free.Ports.zLib
{
public static partial class zlib
{
// Structure for decoding tables. Each entry provides either the
// information needed to do the operation requested by the code that
// indexed that table entry, or it provides a pointer to another
// table that indexes more bits of the code. op indicates whether
// the entry is a pointer to another table, a literal, a length or
// distance, an end-of-block, or an invalid code. For a table
// pointer, the low four bits of op is the number of index bits of
// that table. For a length or distance, the low four bits of op
// is the number of extra bits to get after the code. bits is
// the number of bits in this code or part of the code to drop off
// of the bit buffer. val is the actual byte to output in the case
// of a literal, the base length or distance, or the offset from
// the current table to the next table. Each entry is four bytes.
private class code
{
public byte op; // operation, extra bits, table bits
public byte bits; // bits in this part of the code
public ushort val; // offset in table or code value
public code(byte op, byte bits, ushort val)
{
this.op=op;
this.bits=bits;
this.val=val;
}
public code Clone()
{
return new code(op, bits, val);
}
}
// op values as set by inflate_table():
// 00000000 - literal
// 0000tttt - table link, tttt != 0 is the number of table index bits
// 0001eeee - length or distance, eeee is the number of extra bits
// 01100000 - end of block
// 01000000 - invalid code
// Maximum size of the dynamic table. The maximum number of code structures is
// 1444, which is the sum of 852 for literal/length codes and 592 for distance
// codes. These values were found by exhaustive searches using the program
// examples/enough.c found in the zlib distribtution. The arguments to that
// program are the number of symbols, the initial root table size, and the
// maximum bit length of a code. "enough 286 9 15" for literal/length codes
// returns returns 852, and "enough 30 6 15" for distance codes returns 592.
// The initial root table size (9 or 6) is found in the fifth argument of the
// inflate_table() calls in inflate.c and infback.c. If the root table size is
// changed, then these maximum sizes would be need to be recalculated and
// updated.
private const int ENOUGH_LENS=852;
private const int ENOUGH_DISTS=592;
private const int ENOUGH=(ENOUGH_LENS+ENOUGH_DISTS);
// Type of code to build for inflate_table()
private enum codetype
{
CODES,
LENS,
DISTS
}
private const int MAXBITS=15;
// If you use the zlib library in a product, an acknowledgment is welcome
// in the documentation of your product. If for some reason you cannot
// include such an acknowledgment, I would appreciate that you keep this
// copyright string in the executable of your product.
private const string inflate_copyright=" inflate 1.2.5 Copyright 1995-2010 Mark Adler ";
// Build a set of tables to decode the provided canonical Huffman code.
// The code lengths are lens[0..codes-1]. The result starts at *table,
// whose indices are 0..2^bits-1. work is a writable array of at least
// lens shorts, which is used as a work area. type is the type of code
// to be generated, CODES, LENS, or DISTS. On return, zero is success,
// -1 is an invalid code, and +1 means that ENOUGH isn't enough. table
// on return points to the next available entry's address. bits is the
// requested root table index bits, and on return it is the actual root
// table index bits. It will differ if the request is greater than the
// longest code or if it is less than the shortest code.
// Length codes 257..285 base
private static readonly ushort[] lbase=new ushort[31]
{
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
};
// Length codes 257..285 extra
private static readonly ushort[] lext=new ushort[31]
{
16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 73, 195
};
// Distance codes 0..29 base
private static readonly ushort[] dbase=new ushort[32]
{
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577, 0, 0
};
// Distance codes 0..29 extra
private static readonly ushort[] dext=new ushort[32]
{
16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 64, 64
};
// ushort* lens -> ushort[] lens + int lens_ind
// code** table -> code[] table + ref int table_ind
private static int inflate_table(codetype type, ushort[] lens, int lens_ind, uint codes, code[] table, ref int table_ind, ref uint bits, ushort[] work)
{
uint len; // a code's length in bits
uint sym; // index of code symbols
uint min, max; // minimum and maximum code lengths
uint root; // number of index bits for root table
uint curr; // number of index bits for current table
uint drop; // code bits to drop for sub-table
int left; // number of prefix codes available
uint used; // code entries in table used
uint huff; // Huffman code
uint incr; // for incrementing code, index
uint fill; // index for replicating entries
uint low; // low bits for current root entry
uint mask; // mask for low root bits
code here; // table entry for duplication
int next; // next available space in table
ushort[] _base; // base value table to use
int base_ind; // index in _base
ushort[] extra; // extra bits table to use
int extra_ind; // index in extra
int end; // use base and extra for symbol > end
ushort[] count=new ushort[MAXBITS+1]; // number of codes of each length
ushort[] offs=new ushort[MAXBITS+1]; // offsets in table for each length
// Process a set of code lengths to create a canonical Huffman code. The
// code lengths are lens[0..codes-1]. Each length corresponds to the
// symbols 0..codes-1. The Huffman code is generated by first sorting the
// symbols by length from short to long, and retaining the symbol order
// for codes with equal lengths. Then the code starts with all zero bits
// for the first code of the shortest length, and the codes are integer
// increments for the same length, and zeros are appended as the length
// increases. For the deflate format, these bits are stored backwards
// from their more natural integer increment ordering, and so when the
// decoding tables are built in the large loop below, the integer codes
// are incremented backwards.
// This routine assumes, but does not check, that all of the entries in
// lens[] are in the range 0..MAXBITS. The caller must assure this.
// 1..MAXBITS is interpreted as that code length. zero means that that
// symbol does not occur in this code.
// The codes are sorted by computing a count of codes for each length,
// creating from that a table of starting indices for each length in the
// sorted table, and then entering the symbols in order in the sorted
// table. The sorted table is work[], with that space being provided by
// the caller.
// The length counts are used for other purposes as well, i.e. finding
// the minimum and maximum length codes, determining if there are any
// codes at all, checking for a valid set of lengths, and looking ahead
// at length counts to determine sub-table sizes when building the
// decoding tables.
// accumulate lengths for codes (assumes lens[] all in 0..MAXBITS)
for(len=0; len<=MAXBITS; len++) count[len]=0;
for(sym=0; sym<codes; sym++) count[lens[lens_ind+sym]]++;
// bound code lengths, force root to be within code lengths
root=bits;
for(max=MAXBITS; max>=1; max--) if(count[max]!=0) break;
if(root>max) root=max;
if(max==0)
{ // no symbols to code at all
here=new code(64, 1, 0); // invalid code marker
table[table_ind++]=here.Clone(); // make a table to force an error
table[table_ind++]=here.Clone();
bits=1;
return 0; // no symbols, but wait for decoding to report error
}
for(min=1; min<max; min++) if(count[min]!=0) break;
if(root<min) root=min;
// check for an over-subscribed or incomplete set of lengths
left=1;
for(len=1; len<=MAXBITS; len++)
{
left<<=1;
left-=count[len];
if(left<0) return -1; // over-subscribed
}
if(left>0&&(type==codetype.CODES||max!=1)) return -1; // incomplete set
// generate offsets into symbol table for each length for sorting
offs[1]=0;
for(len=1; len<MAXBITS; len++) offs[len+1]=(ushort)(offs[len]+count[len]);
// sort symbols by length, by symbol order within each length
for(sym=0; sym<codes; sym++)
if(lens[lens_ind+sym]!=0) work[offs[lens[lens_ind+sym]]++]=(ushort)sym;
// Create and fill in decoding tables. In this loop, the table being
// filled is at next and has curr index bits. The code being used is huff
// with length len. That code is converted to an index by dropping drop
// bits off of the bottom. For codes where len is less than drop + curr,
// those top drop + curr - len bits are incremented through all values to
// fill the table with replicated entries.
// root is the number of index bits for the root table. When len exceeds
// root, sub-tables are created pointed to by the root entry with an index
// of the low root bits of huff. This is saved in low to check for when a
// new sub-table should be started. drop is zero when the root table is
// being filled, and drop is root when sub-tables are being filled.
// When a new sub-table is needed, it is necessary to look ahead in the
// code lengths to determine what size sub-table is needed. The length
// counts are used for this, and so count[] is decremented as codes are
// entered in the tables.
// used keeps track of how many table entries have been allocated from the
// provided *table space. It is checked for LENS and DIST tables against
// the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
// the initial root table size constants. See the comments in inftrees.h
// for more information.
// sym increments through all symbols, and the loop terminates when
// all codes of length max, i.e. all codes, have been processed. This
// routine permits incomplete codes, so another loop after this one fills
// in the rest of the decoding tables with invalid code markers.
// set up for code type
switch(type)
{
case codetype.CODES:
base_ind=extra_ind=0;
_base=extra=work; // dummy value--not used
end=19;
break;
case codetype.LENS:
_base=lbase;
base_ind=-257;
extra=lext;
extra_ind=-257;
end=256;
break;
default: // DISTS
base_ind=extra_ind=0;
_base=dbase;
extra=dext;
end=-1;
break;
}
// initialize state for loop
huff=0; // starting code
sym=0; // starting code symbol
len=min; // starting code length
next=table_ind; // current table to fill in
curr=root; // current table index bits
drop=0; // current bits to drop from code for index
low=uint.MaxValue; // trigger new sub-table when len > root
used=1U<<(int)root; // use root table entries
mask=used-1; // mask for comparing low
// check available table space
if((type==codetype.LENS&&used>=ENOUGH_LENS)||(type==codetype.DISTS&&used>=ENOUGH_DISTS)) return 1;
// process all codes and make table entries
for(; ; )
{
// create table entry
here=new code(0, (byte)(len-drop), 0);
if((int)(work[sym])<end)
{
here.op=0;
here.val=work[sym];
}
else if((int)(work[sym])>end)
{
here.op=(byte)(extra[extra_ind+work[sym]]);
here.val=_base[base_ind+work[sym]];
}
else
{
here.op=32+64; // end of block
here.val=0;
}
// replicate for those indices with low len bits equal to huff
incr=1U<<(int)(len-drop);
fill=1U<<(int)curr;
min=fill; // save offset to next table
do
{
fill-=incr;
table[next+(huff>>(int)drop)+fill]=here.Clone();
} while(fill!=0);
// backwards increment the len-bit code huff
incr=1U<<(int)(len-1);
while((huff&incr)!=0) incr>>=1;
if(incr!=0)
{
huff&=incr-1;
huff+=incr;
}
else huff=0;
// go to next symbol, update count, len
sym++;
if(--(count[len])==0)
{
if(len==max) break;
len=lens[lens_ind+work[sym]];
}
// create new sub-table if needed
if(len>root&&(huff&mask)!=low)
{
// if first time, transition to sub-tables
if(drop==0) drop=root;
// increment past last table
next+=(int)min; // here min is 1 << curr
// determine length of next table
curr=len-drop;
left=1<<(int)curr;
while(curr+drop<max)
{
left-=count[curr+drop];
if(left<=0) break;
curr++;
left<<=1;
}
// check for enough space
used+=1U<<(int)curr;
if((type==codetype.LENS&&used>=ENOUGH_LENS)||(type==codetype.DISTS&&used>=ENOUGH_DISTS)) return 1;
// point entry in root table to sub-table
low=huff&mask;
table[table_ind+low]=new code((byte)curr, (byte)root, (ushort)(next-table_ind));
}
}
// Fill in rest of table for incomplete codes. This loop is similar to the
// loop above in incrementing huff for table indices. It is assumed that
// len is equal to curr + drop, so there is no loop needed to increment
// through high index bits. When the current sub-table is filled, the loop
// drops back to the root table to fill in any remaining entries there.
here=new code(64, (byte)(len-drop), 0); // invalid code marker
while(huff!=0)
{
// when done with sub-table, drop back to root table
if(drop!=0&&(huff&mask)!=low)
{
drop=0;
len=root;
next=table_ind;
here.bits=(byte)len;
}
// put invalid code marker in table
table[next+huff>>(int)drop]=here.Clone();
// backwards increment the len-bit code huff
incr=1U<<(int)(len-1);
while((huff&incr)!=0) incr>>=1;
if(incr!=0)
{
huff&=incr-1;
huff+=incr;
}
else huff=0;
}
// set return parameters
table_ind+=(int)used;
bits=root;
return 0;
}
}
}