Skip to content

Latest commit

 

History

History
executable file
·
56 lines (44 loc) · 2.25 KB

README.md

File metadata and controls

executable file
·
56 lines (44 loc) · 2.25 KB

What trt_vehicle can do:

  1. Vehicle detector
  2. Vehicle plate detector and recognizer
  3. Vehicle scanner based on side view of body
  4. Vehicle color and type classifier
  5. Vehicle feature encoder used for search(1:N) or comparison(1:1)

How to install tensorrt and cuda ?

Refer to NVIDIA official web

  1. download files according to your GPUs (below for this repo) cuda_11.1.0_455.23.05_linux.run, cudnn-11.1-linux-x64-v8.0.5.39.tgz, TensorRT-7.2.1.6.Ubuntu-18.04.x86_64-gnu.cuda-11.1.cudnn8.0.tar.gz
  2. run ./cuda_11.1.0_455.23.05_linux.run install cuda(at /usr/local) and driver, maybe need to reboot machine some times
  3. upzip cudnn-11.1-linux-x64-v8.0.5.39.tgz , copy all header files to '/usr/local/cuda/include' and copy all lib files to '/usr/local/cuda/lib64'
  4. unzip TensorRT-7.2.1.6.Ubuntu-18.04.x86_64-gnu.cuda-11.1.cudnn8.0.tar.gz at /usr/local, create softlink by ln -s /usr/local/TensorRT-7.2.1.6 /usr/local/tensorRT
  5. add export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/tensorRT/lib:/usr/local/cuda/lib64:/usr/local/lib, export CPATH=$CPATH:/usr/local/cuda/include:/usr/local/tensorRT/include to ~/.bashrc
  6. run source ~/.bashrc

CUDA 11.1 + TensorRT 7.2.1 for this repository (tested)

CUDA 11.1 + TensorRT 8.5 for this repository (tested)

How to generate trt model from onnx ?

trtexec --onnx=./vehicle.onnx --saveEngine=vehicleXXX.trt --buildOnly=true

How to build trt_vehicle ?

  1. cd ./build, and run sh ./build.sh.
  2. It will generate a .so library named libtrt_vehicle.so.
  3. Or include source code directly, no .so library needed.

How to debug for trt_vehicle ?

Make sure you have build trt_vehicle correctly

  1. Change model paths to your specific values in ./main/*.cpp.
  2. Select one of ./main/*.cpp files and click Run button in vscode, choose one launch item at the top of window(trt_vehicle).

Sample screenshot

vehicle detect

vehicle plate detect

vehicle scan

vehicle color and type classify

vehicle compare

vehicle search

vehicle cluster