-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbio.c
643 lines (595 loc) · 13.3 KB
/
bio.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
#include "../param.h"
#include "../user.h"
#include "../buf.h"
#include "../conf.h"
#include "../systm.h"
#include "../proc.h"
#include "../seg.h"
/*
* This is the set of buffers proper, whose heads
* were declared in buf.h. There can exist buffer
* headers not pointing here that are used purely
* as arguments to the I/O routines to describe
* I/O to be done-- e.g. swbuf, just below, for
* swapping.
*/
char buffers[NBUF][514];
struct buf swbuf;
/*
* Declarations of the tables for the magtape devices;
* see bdwrite.
*/
int tmtab;
int httab;
/*
* The following several routines allocate and free
* buffers with various side effects. In general the
* arguments to an allocate routine are a device and
* a block number, and the value is a pointer to
* to the buffer header; the buffer is marked "busy"
* so that no on else can touch it. If the block was
* already in core, no I/O need be done; if it is
* already busy, the process waits until it becomes free.
* The following routines allocate a buffer:
* getblk
* bread
* breada
* Eventually the buffer must be released, possibly with the
* side effect of writing it out, by using one of
* bwrite
* bdwrite
* bawrite
* brelse
*/
/*
* Read in (if necessary) the block and return a buffer pointer.
*/
bread(dev, blkno)
{
register struct buf *rbp;
rbp = getblk(dev, blkno);
if (rbp->b_flags&B_DONE)
return(rbp);
rbp->b_flags =| B_READ;
rbp->b_wcount = -256;
(*bdevsw[dev.d_major].d_strategy)(rbp);
iowait(rbp);
return(rbp);
}
/* --------------------------- */
/*
* Read in the block, like bread, but also start I/O on the
* read-ahead block (which is not allocated to the caller)
*/
breada(adev, blkno, rablkno)
{
register struct buf *rbp, *rabp;
register int dev;
dev = adev;
rbp = 0;
if (!incore(dev, blkno)) {
rbp = getblk(dev, blkno);
if ((rbp->b_flags&B_DONE) == 0) {
rbp->b_flags =| B_READ;
rbp->b_wcount = -256;
(*bdevsw[adev.d_major].d_strategy)(rbp);
}
}
if (rablkno && !incore(dev, rablkno)) {
rabp = getblk(dev, rablkno);
if (rabp->b_flags & B_DONE)
brelse(rabp);
else {
rabp->b_flags =| B_READ|B_ASYNC;
rabp->b_wcount = -256;
(*bdevsw[adev.d_major].d_strategy)(rabp);
}
}
if (rbp==0)
return(bread(dev, blkno));
iowait(rbp);
return(rbp);
}
/* --------------------------- */
/*
* Write the buffer, waiting for completion.
* Then release the buffer.
*/
bwrite(bp)
struct buf *bp;
{
register struct buf *rbp;
register flag;
rbp = bp;
flag = rbp->b_flags;
rbp->b_flags =& ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
rbp->b_wcount = -256;
(*bdevsw[rbp->b_dev.d_major].d_strategy)(rbp);
if ((flag&B_ASYNC) == 0) {
iowait(rbp);
brelse(rbp);
} else if ((flag&B_DELWRI)==0)
geterror(rbp);
}
/* --------------------------- */
/*
* Release the buffer, marking it so that if it is grabbed
* for another purpose it will be written out before being
* given up (e.g. when writing a partial block where it is
* assumed that another write for the same block will soon follow).
* This can't be done for magtape, since writes must be done
* in the same order as requested.
*/
bdwrite(bp)
struct buf *bp;
{
register struct buf *rbp;
register struct devtab *dp;
rbp = bp;
dp = bdevsw[rbp->b_dev.d_major].d_tab;
if (dp == &tmtab || dp == &httab)
bawrite(rbp);
else {
rbp->b_flags =| B_DELWRI | B_DONE;
brelse(rbp);
}
}
/* --------------------------- */
/*
* Release the buffer, start I/O on it, but don't wait for completion.
*/
bawrite(bp)
struct buf *bp;
{
register struct buf *rbp;
rbp = bp;
rbp->b_flags =| B_ASYNC;
bwrite(rbp);
}
/* --------------------------- */
/* release the buffer, with no I/O implied.
*/
brelse(bp)
struct buf *bp;
{
register struct buf *rbp, **backp;
register int sps;
rbp = bp;
if (rbp->b_flags&B_WANTED)
wakeup(rbp);
if (bfreelist.b_flags&B_WANTED) {
bfreelist.b_flags =& ~B_WANTED;
wakeup(&bfreelist);
}
if (rbp->b_flags&B_ERROR)
rbp->b_dev.d_minor = -1; /* no assoc. on error */
backp = &bfreelist.av_back;
sps = PS->integ;
spl6();
rbp->b_flags =& ~(B_WANTED|B_BUSY|B_ASYNC);
(*backp)->av_forw = rbp;
rbp->av_back = *backp;
*backp = rbp;
rbp->av_forw = &bfreelist;
PS->integ = sps;
}
/* --------------------------- */
/* See if the block is associated with some buffer
* (mainly to avoid getting hung up on a wait in breada)
*/
incore(adev, blkno)
{
register int dev;
register struct buf *bp;
register struct devtab *dp;
dev = adev;
dp = bdevsw[adev.d_major].d_tab;
for (bp=dp->b_forw; bp != dp; bp = bp->b_forw)
if (bp->b_blkno==blkno && bp->b_dev==dev)
return(bp);
return(0);
}
/* --------------------------- */
/* Assign a buffer for the given block. If the appropriate
* block is already associated, return it; otherwise search
* for the oldest non-busy buffer and reassign it.
* When a 512-byte area is wanted for some random reason
* (e.g. during exec, for the user arglist) getblk can be called
* with device NODEV to avoid unwanted associativity.
*/
getblk(dev, blkno)
{
register struct buf *bp;
register struct devtab *dp;
extern lbolt;
if(dev.d_major >= nblkdev)
panic("blkdev");
loop:
if (dev < 0)
dp = &bfreelist;
else {
dp = bdevsw[dev.d_major].d_tab;
if(dp == NULL)
panic("devtab");
for (bp=dp->b_forw; bp != dp; bp = bp->b_forw) {
if (bp->b_blkno!=blkno || bp->b_dev!=dev)
continue;
spl6();
if (bp->b_flags&B_BUSY) {
bp->b_flags =| B_WANTED;
sleep(bp, PRIBIO);
spl0();
goto loop;
}
spl0();
notavail(bp);
return(bp);
}
}
spl6();
if (bfreelist.av_forw == &bfreelist) {
bfreelist.b_flags =| B_WANTED;
sleep(&bfreelist, PRIBIO);
spl0();
goto loop;
}
spl0();
notavail(bp = bfreelist.av_forw);
if (bp->b_flags & B_DELWRI) {
bp->b_flags =| B_ASYNC;
bwrite(bp);
goto loop;
}
bp->b_flags = B_BUSY | B_RELOC;
bp->b_back->b_forw = bp->b_forw;
bp->b_forw->b_back = bp->b_back;
bp->b_forw = dp->b_forw;
bp->b_back = dp;
dp->b_forw->b_back = bp;
dp->b_forw = bp;
bp->b_dev = dev;
bp->b_blkno = blkno;
return(bp);
}
/* --------------------------- */
/* Wait for I/O completion on the buffer; return errors
* to the user.
*/
iowait(bp)
struct buf *bp;
{
register struct buf *rbp;
rbp = bp;
spl6();
while ((rbp->b_flags&B_DONE)==0)
sleep(rbp, PRIBIO);
spl0();
geterror(rbp);
}
/* --------------------------- */
/* Unlink a buffer from the available list and mark it busy.
* (internal interface)
*/
notavail(bp)
struct buf *bp;
{
register struct buf *rbp;
register int sps;
rbp = bp;
sps = PS->integ;
spl6();
rbp->av_back->av_forw = rbp->av_forw;
rbp->av_forw->av_back = rbp->av_back;
rbp->b_flags =| B_BUSY;
PS->integ = sps;
}
/* --------------------------- */
/* Mark I/O complete on a buffer, release it if I/O is asynchronous,
* and wake up anyone waiting for it.
*/
iodone(bp)
struct buf *bp;
{
register struct buf *rbp;
rbp = bp;
if(rbp->b_flags&B_MAP)
mapfree(rbp);
rbp->b_flags =| B_DONE;
if (rbp->b_flags&B_ASYNC)
brelse(rbp);
else {
rbp->b_flags =& ~B_WANTED;
wakeup(rbp);
}
}
/* --------------------------- */
/* Zero the core associated with a buffer.
*/
clrbuf(bp)
int *bp;
{
register *p;
register c;
p = bp->b_addr;
c = 256;
do
*p++ = 0;
while (--c);
}
/* --------------------------- */
/* Initialize the buffer I/O system by freeing
* all buffers and setting all device buffer lists to empty.
*/
binit()
{
register struct buf *bp;
register struct devtab *dp;
register int i;
struct bdevsw *bdp;
bfreelist.b_forw = bfreelist.b_back =
bfreelist.av_forw = bfreelist.av_back = &bfreelist;
for (i=0; i<NBUF; i++) {
bp = &buf[i];
bp->b_dev = -1;
bp->b_addr = buffers[i];
bp->b_back = &bfreelist;
bp->b_forw = bfreelist.b_forw;
bfreelist.b_forw->b_back = bp;
bfreelist.b_forw = bp;
bp->b_flags = B_BUSY;
brelse(bp);
}
i = 0;
for (bdp = bdevsw; bdp->d_open; bdp++) {
dp = bdp->d_tab;
if(dp) {
dp->b_forw = dp;
dp->b_back = dp;
}
i++;
}
nblkdev = i;
}
/* --------------------------- */
/* Device start routine for disks
* and other devices that have the register
* layout of the older DEC controllers (RF, RK, RP, TM)
*/
#define IENABLE 0100
#define WCOM 02
#define RCOM 04
#define GO 01
devstart(bp, devloc, devblk, hbcom)
struct buf *bp;
int *devloc;
{
register int *dp;
register struct buf *rbp;
register int com;
dp = devloc;
rbp = bp;
*dp = devblk; /* block address */
*--dp = rbp->b_addr; /* buffer address */
*--dp = rbp->b_wcount; /* word count */
com = (hbcom<<8) | IENABLE | GO |
((rbp->b_xmem & 03) << 4);
if (rbp->b_flags&B_READ) /* command + x-mem */
com =| RCOM;
else
com =| WCOM;
*--dp = com;
}
/* --------------------------- */
/* startup routine for RH controllers. */
#define RHWCOM 060
#define RHRCOM 070
rhstart(bp, devloc, devblk, abae)
struct buf *bp;
int *devloc, *abae;
{
register int *dp;
register struct buf *rbp;
register int com;
dp = devloc;
rbp = bp;
if(cputype == 70)
*abae = rbp->b_xmem;
*dp = devblk; /* block address */
*--dp = rbp->b_addr; /* buffer address */
*--dp = rbp->b_wcount; /* word count */
com = IENABLE | GO |
((rbp->b_xmem & 03) << 8);
if (rbp->b_flags&B_READ) /* command + x-mem */
com =| RHRCOM; else
com =| RHWCOM;
*--dp = com;
}
/* --------------------------- */
/*
* 11/70 routine to allocate the
* UNIBUS map and initialize for
* a unibus device.
* The code here and in
* rhstart assumes that an rh on an 11/70
* is an rh70 and contains 22 bit addressing.
*/
int maplock;
mapalloc(abp)
struct buf *abp;
{
register i, a;
register struct buf *bp;
if(cputype != 70)
return;
spl6();
while(maplock&B_BUSY) {
maplock =| B_WANTED;
sleep(&maplock, PSWP);
}
maplock =| B_BUSY;
spl0();
bp = abp;
bp->b_flags =| B_MAP;
a = bp->b_xmem;
for(i=16; i<32; i=+2)
UBMAP->r[i+1] = a;
for(a++; i<48; i=+2)
UBMAP->r[i+1] = a;
bp->b_xmem = 1;
}
/* --------------------------- */
mapfree(bp)
struct buf *bp;
{
bp->b_flags =& ~B_MAP;
if(maplock&B_WANTED)
wakeup(&maplock);
maplock = 0;
}
/* --------------------------- */
/*
* swap I/O
*/
swap(blkno, coreaddr, count, rdflg)
{
register int *fp;
fp = &swbuf.b_flags;
spl6();
while (*fp&B_BUSY) {
*fp =| B_WANTED;
sleep(fp, PSWP);
}
*fp = B_BUSY | B_PHYS | rdflg;
swbuf.b_dev = swapdev;
swbuf.b_wcount = - (count<<5); /* 32 w/block */
swbuf.b_blkno = blkno;
swbuf.b_addr = coreaddr<<6; /* 64 b/block */
swbuf.b_xmem = (coreaddr>>10) & 077;
(*bdevsw[swapdev>>8].d_strategy)(&swbuf);
spl6();
while((*fp&B_DONE)==0)
sleep(fp, PSWP);
if (*fp&B_WANTED)
wakeup(fp);
spl0();
*fp =& ~(B_BUSY|B_WANTED);
return(*fp&B_ERROR);
}
/* --------------------------- */
/*
* make sure all write-behind blocks
* on dev (or NODEV for all)
* are flushed out.
* (from umount and update)
*/
bflush(dev)
{
register struct buf *bp;
loop:
spl6();
for (bp = bfreelist.av_forw; bp != &bfreelist; bp = bp->av_forw) {
if (bp->b_flags&B_DELWRI && (dev == NODEV||dev==bp->b_dev)) {
bp->b_flags =| B_ASYNC;
notavail(bp);
bwrite(bp);
goto loop;
}
}
spl0();
}
/* --------------------------- */
/*
* Raw I/O. The arguments are
* The strategy routine for the device
* A buffer, which will always be a special buffer
* header owned exclusively by the device for this purpose
* The device number
* Read/write flag
* Essentially all the work is computing physical addresses and
* validating them.
*/
physio(strat, abp, dev, rw)
struct buf *abp;
int (*strat)();
{
register struct buf *bp;
register char *base;
register int nb;
int ts;
bp = abp;
base = u.u_base;
/*
* Check odd base, odd count, and address wraparound
*/
if (base&01 || u.u_count&01 || base>=base+u.u_count)
goto bad;
ts = (u.u_tsize+127) & ~0177;
if (u.u_sep)
ts = 0;
nb = (base>>6) & 01777;
/*
* Check overlap with text. (ts and nb now
* in 64-byte clicks)
*/
if (nb < ts)
goto bad;
/*
* Check that transfer is either entirely in the
* data or in the stack: that is, either
* the end is in the data or the start is in the stack
* (remember wraparound was already checked).
*/
if ((((base+u.u_count)>>6)&01777) >= ts+u.u_dsize
&& nb < 1024-u.u_ssize)
goto bad;
spl6();
while (bp->b_flags&B_BUSY) {
bp->b_flags =| B_WANTED;
sleep(bp, PRIBIO);
}
bp->b_flags = B_BUSY | B_PHYS | rw;
bp->b_dev = dev;
/*
* Compute physical address by simulating
* the segmentation hardware.
*/
bp->b_addr = base&077;
base = (u.u_sep? UDSA: UISA)->r[nb>>7] + (nb&0177);
bp->b_addr =+ base<<6;
bp->b_xmem = (base>>10) & 077;
bp->b_blkno = lshift(u.u_offset, -9);
bp->b_wcount = -((u.u_count>>1) & 077777);
bp->b_error = 0;
u.u_procp->p_flag =| SLOCK;
(*strat)(bp);
spl6();
while ((bp->b_flags&B_DONE) == 0)
sleep(bp, PRIBIO);
u.u_procp->p_flag =& ~SLOCK;
if (bp->b_flags&B_WANTED)
wakeup(bp);
spl0();
bp->b_flags =& ~(B_BUSY|B_WANTED);
u.u_count = (-bp->b_resid)<<1;
geterror(bp);
return;
bad:
u.u_error = EFAULT;
}
/* --------------------------- */
/*
* Pick up the device's error number and pass it to the user;
* if there is an error but the number is 0 set a generalized
* code. Actually the latter is always true because devices
* don't yet return specific errors.
*/
geterror(abp)
struct buf *abp;
{
register struct buf *bp;
bp = abp;
if (bp->b_flags&B_ERROR)
if ((u.u_error = bp->b_error)==0)
u.u_error = EIO;
}
/* --------------------------- */