Discord
|
Documentation
|
User Guide
|
Want to Contribute?
pip install polars-ds
PDS is a modern take on data science and traditional tabular machine learning. It is dataframe-centric in design, and provides parallelism for free via Polars. It offers Polars syntax that works both in normal and aggregation contexts, and provides these conveniences to the end user without any additional dependency. It includes the most common functions from NumPy, SciPy, edit distances, KNN-related queries, EDA tools, feature engineering queries, etc. Yes, it only depends on Polars (unless you want to use the plotting functionalities and want to interop with NumPy). Most of the code is rewritten in Rust and is on par or even faster than existing functions in SciPy and Scikit-learn. The following are some examples:
Parallel evaluations of classification metrics on segments
import polars as pl
import polars_ds as pds
df.lazy().group_by("segments").agg(
pds.query_roc_auc("actual", "predicted").alias("roc_auc"),
pds.query_log_loss("actual", "predicted").alias("log_loss"),
).collect()
shape: (2, 3)
┌──────────┬──────────┬──────────┐
│ segments ┆ roc_auc ┆ log_loss │
│ --- ┆ --- ┆ --- │
│ str ┆ f64 ┆ f64 │
╞══════════╪══════════╪══════════╡
│ a ┆ 0.497745 ┆ 1.006438 │
│ b ┆ 0.498801 ┆ 0.997226 │
└──────────┴──────────┴──────────┘
Get all neighbors within radius r, call them best friends, and count the number
df.select(
pl.col("id"),
pds.query_radius_ptwise(
pl.col("var1"), pl.col("var2"), pl.col("var3"), # Columns used as the coordinates in 3d space
index = pl.col("id"),
r = 0.1,
dist = "sql2", # squared l2
parallel = True
).alias("best friends"),
).with_columns( # -1 to remove the point itself
(pl.col("best friends").list.len() - 1).alias("best friends count")
).head()
shape: (5, 3)
┌─────┬───────────────────┬────────────────────┐
│ id ┆ best friends ┆ best friends count │
│ --- ┆ --- ┆ --- │
│ u32 ┆ list[u32] ┆ u32 │
╞═════╪═══════════════════╪════════════════════╡
│ 0 ┆ [0, 811, … 1435] ┆ 152 │
│ 1 ┆ [1, 953, … 1723] ┆ 159 │
│ 2 ┆ [2, 355, … 835] ┆ 243 │
│ 3 ┆ [3, 102, … 1129] ┆ 110 │
│ 4 ┆ [4, 1280, … 1543] ┆ 226 │
└─────┴───────────────────┴────────────────────┘
Ridge Regression on Categories
df = pds.random_data(size=5_000, n_cols=0).select(
pds.random(0.0, 1.0).alias("x1"),
pds.random(0.0, 1.0).alias("x2"),
pds.random(0.0, 1.0).alias("x3"),
pds.random_int(0, 3).alias("categories")
).with_columns(
y = pl.col("x1") * 0.5 + pl.col("x2") * 0.25 - pl.col("x3") * 0.15 + pds.random() * 0.0001
)
df.group_by("categories").agg(
pds.query_lstsq(
"x1", "x2", "x3",
target = "y",
method = "l2",
l2_reg = 0.05,
add_bias = False
).alias("coeffs")
)
shape: (3, 2)
┌────────────┬─────────────────────────────────┐
│ categories ┆ coeffs │
│ --- ┆ --- │
│ i32 ┆ list[f64] │
╞════════════╪═════════════════════════════════╡
│ 0 ┆ [0.499912, 0.250005, -0.149846… │
│ 1 ┆ [0.499922, 0.250004, -0.149856… │
│ 2 ┆ [0.499923, 0.250004, -0.149855… │
└────────────┴─────────────────────────────────┘
Various String Edit distances
df.select( # Column "word", compared to string in pl.lit(). It also supports column vs column comparison
pds.str_leven("word", pl.lit("asasasa"), return_sim=True).alias("Levenshtein"),
pds.str_osa("word", pl.lit("apples"), return_sim=True).alias("Optimal String Alignment"),
pds.str_jw("word", pl.lit("apples")).alias("Jaro-Winkler"),
)
In-dataframe statistical tests
df.group_by("market_id").agg(
pds.query_ttest_ind("var1", "var2", equal_var=False).alias("t-test"),
pds.query_chi2("category_1", "category_2").alias("chi2-test"),
pds.query_f_test("var1", group = "category_1").alias("f-test")
)
shape: (3, 4)
┌───────────┬──────────────────────┬──────────────────────┬─────────────────────┐
│ market_id ┆ t-test ┆ chi2-test ┆ f-test │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ struct[2] ┆ struct[2] ┆ struct[2] │
╞═══════════╪══════════════════════╪══════════════════════╪═════════════════════╡
│ 0 ┆ {2.072749,0.038272} ┆ {33.487634,0.588673} ┆ {0.312367,0.869842} │
│ 1 ┆ {0.469946,0.638424} ┆ {42.672477,0.206119} ┆ {2.148937,0.072536} │
│ 2 ┆ {-1.175325,0.239949} ┆ {28.55723,0.806758} ┆ {0.506678,0.730849} │
└───────────┴──────────────────────┴──────────────────────┴─────────────────────┘
Multiple Convolutions at once!
# Multiple Convolutions at once
# Modes: `same`, `left` (left-aligned same), `right` (right-aligned same), `valid` or `full`
# Method: `fft`, `direct`
# Currently slower than SciPy but provides parallelism because of Polars
df.select(
pds.convolve("f", [-1, 0, 0, 0, 1], mode = "full", method = "fft"), # column f with the kernel given here
pds.convolve("a", [-1, 0, 0, 0, 1], mode = "full", method = "direct"),
pds.convolve("b", [-1, 0, 0, 0, 1], mode = "full", method = "direct"),
).head()
Tabular Machine Learning Data Transformation Pipeline
import polars as pl
import polars.selectors as cs
from polars_ds.pipeline import Pipeline, Blueprint
bp = (
# If we specify a target, then target will be excluded from any transformations.
Blueprint(df, name = "example", target = "approved")
.lowercase() # lowercase all columns
.select(cs.numeric() | cs.by_name(["gender", "employer_category1", "city_category"]))
# Impute loan_period by running a simple linear regression.
# Explicitly put target, since this is not the target for prediction.
.linear_impute(features = ["var1", "existing_emi"], target = "loan_period")
.impute(["existing_emi"], method = "median")
.append_expr( # generate some features
pl.col("existing_emi").log1p().alias("existing_emi_log1p"),
pl.col("loan_amount").log1p().alias("loan_amount_log1p"),
pl.col("loan_amount").sqrt().alias("loan_amount_sqrt"),
pl.col("loan_amount").shift(-1).alias("loan_amount_lag_1") # any kind of lag transform
)
.scale( # target is numerical, but will be excluded automatically because bp is initialzied with a target
cs.numeric().exclude(["var1", "existing_emi_log1p"]), method = "standard"
) # Scale the columns up to this point. The columns below won't be scaled
.append_expr(
# Add missing flags
pl.col("employer_category1").is_null().cast(pl.UInt8).alias("employer_category1_is_missing")
)
.one_hot_encode("gender", drop_first=True)
.woe_encode("city_category") # No need to specify target because we initialized bp with a target
.target_encode("employer_category1", min_samples_leaf = 20, smoothing = 10.0) # same as above
)
pipe:Pipeline = bp.materialize()
# Check out the result in our example notebooks!
df_transformed = pipe.transform(df)
df_transformed.head()
And more!
import polars_ds as pds
To make full use of the Diagnosis module, do
pip install "polars_ds[plot]"
See this for Polars Extensions: notebook
See this for Native Polars DataFrame Explorative tools: notebook
- Documentation writing, Doc Review, and Benchmark preparation
- Standalone KNN and linear regression module.
- K-means, K-medoids clustering as expressions and also standalone modules.
- Other.
Currently in Beta. Feel free to submit feature requests in the issues section of the repo. This library will only depend on python Polars (for most of its core) and will try to be as stable as possible for polars>=1 (It currently supports polars>=0.20.16 but that will be dropped soon). Exceptions will be made when Polars's update forces changes in the plugins.
This package is not tested with Polars streaming mode and is not designed to work with data so big that has to be streamed.