Skip to content
/ gemm Public

Musings in GEMM (General Matrix Multiplication)

License

Notifications You must be signed in to change notification settings

blu/gemm

Repository files navigation

Musings in GEMM (General Matrix Multiplication)

Fooling around with flops/clock in the famous SGEMM - what could be more fun? GEMM generally does C += A * B where A, B and C are large-ish dense matrices of single (SGEMM) or double precision (DGEMM) floats.

Usage

The low-tech bash script build_sgemm.sh will try to build the test for a recognized host architectures - substitute the compiler for one of your choice. Macros of interest, passed with -D on the command line:

  • ALT - implementation alternatives
    • -1 - scalar version
    • 0 - 16-element-wide version suitable for autovectorizers
    • 1 - 2x16-element-wide SSE2 (x86/amd64) version
    • 2 - 64-element-wide AVX256 (x86/amd64) version
    • 3 - 2x32-element-wide AVX256 (x86/amd64) version
    • 4 - 16-element-wide ASIMD2 (aarch64) version
    • 5 - 32-element-wide ASIMD2 (aarch64) version
    • 6 - 2x16-element-wide ASIMD2 (aarch64) version
    • 7 - 2x32-element-wide ASIMD2 (aarch64) version
    • 8 - 2x16-element-wide MSA (mips32/mips64) version
    • 9 - 2x32-element-wide AVX512 (x86/amd64) version
    • 10 - 2x64-element-wide AVX512 (x86/amd64) version
    • 11 - 64-element-wide SVE512 (aarch64) version
    • 12 - 2x64-element-wide SVE512 (aarch64) version
    • 13 - 4x64-element-wide SVE512 (aarch64) version
  • PREFETCH - distance, in floats, to prefetch in the innermost loop (0 for no prefetch; unused in the scalar version)
  • MATX_SIZE - dimension of the square matrices A, B & C
  • REP_EXP - exponent of the number of repetitions of the test, ie. 1eEXP
  • PRINT_MATX - print out C on the standard output (for debugging)

Tips

To tell what prefetch works best on a given CPU and matrix dimension, use something along the following (pick ALT wisely):

for i in {0..10} ; do ./build_sgemm.sh -DALT=1 -DPREFETCH=`echo "512 + 512 * $i" | bc` -DMATX_SIZE=512 -DREP_EXP=1 ; ./sgemm ; done

Results

Best results measured in SP flops/clock by the formula:

MATX_SIZE^3 * 2 * 10^REP_EXP / (CPU_freq * duration)
CPU (single thread only) width of SIMD ALU RAM GB/s LLC visible per core 64x64 512x512 remarks 1
AMD C60 (Bobcat) 2-way 8.53 512 KB 1.94 1.47 g++ 4.8, ALT = 1, PREFETCH = 2560, SSE2 intrinsics, 1.33GHz
Intel Core2 T5600 4-way 5.33 2 MB 3.31 2.82 clang++ 3.4, ALT = 1, PREFETCH = 4096, SSE2 intrinsics, 1.83GHz
Intel Core2 P8600 4-way 8.53 3 MB 2 4.86 4.14 apple clang++ 8.1, ALT = 1, PREFETCH = 2048, SSE2 intrinsics, 2.40GHz
Intel E5-2687W (SNB) 8-way 25.6 20 MB 2 13.79 10.17 clang++ 3.6, ALT = 3, PREFETCH = 3584, AVX256 intrinsics, 3.1GHz
Intel E5-2687W (SNB) 8-way 25.6 20 MB 2 14.27 10.25 g++ 4.8, ALT = 3, PREFETCH = 3584, AVX256 intrinsics, 3.1GHz
Intel E3-1270v2 (IVB) 8-way 25.6 8 MB 2 13.40 11.05 clang++ 3.6, ALT = 3, PREFETCH = 3072, AVX256 intrinsics, 1.6GHz
Intel E3-1270v2 (IVB) 8-way 25.6 8 MB 2 14.01 11.22 g++ 4.8, ALT = 3, PREFETCH = 3072, AVX256 intrinsics, 1.6GHz
Intel i7-4770 (HSW) 8-way 25.6 8 MB 2 22.72 11.65 g++ 5.1, ALT = 3, PREFETCH = 2560, AVX256+FMA3 intrinsics, 3.9GHz
Xeon Silver 4208 (CSL) 8-way 42.7 11 MB 2 16.76 13.10 clang++ 7.0, ALT = 3, PREFETCH = 4608, AVX256+FMA3 intrinsics, 3.0GHz
Xeon Silver 4208 (CSL) 16-way 42.7 11 MB 2 30.28 16.50 clang++ 7.0, ALT = 9, PREFETCH = 2048, AVX512 intrinsics, 2.0GHz
Xeon W-2155 (SKL) 16-way 75.5 13.75 MB 2 50.00 16.62 clang++ 10.0, ALT = 10, PREFETCH = 2560, AVX512 intrinsics, 4.0GHz
AMD Ryzen 1700X (Zen) 4-way 37.5 16 MB 2 14.15 10.22 clang++ 3.8, ALT = 3, PREFETCH = 3072, AVX256 intrinsics, 3.4GHz
RK3368 (Cortex-A53) 2-way 6.4 512 KB 3 3.12 1.39 clang++ 3.6, ALT = 7, PREFETCH = 1536, ASIMD2 intrinsics, 1.51GHz
RK3399 (Cortex-A72) 4-way 12.8 1 MB 6.81 2.01 clang++ 7.0, ALT = 7, PREFETCH = 2560, ASIMD2 intrinsics, 1.8GHz 4
Allwinner A64 (Cortex-A53) 2-way 4.42 512 KB 3.18 1.38 clang++ 3.6, ALT = 6, PREFETCH = 2560, ASIMD2 intrinsics, 1.152GHz 5
MT8163A (Cortex-A53) 2-way 6.4 512 KB 3.09 1.65 clang++ 3.6, ALT = 7, PREFETCH = 1536, ASIMD2 intrinsics, 1.5GHz
MT8173C (Cortex-A53) A32 2-way 12.8 512 KB 1.62 1.01 clang++ 6.0, ALT = 6, PREFETCH = 2560, ASIMD intrinsics, 1.7GHz 6
MT8173C (Cortex-A53) 2-way 12.8 512 KB 2.68 1.44 clang++ 6.0, ALT = 6, PREFETCH = 2560, ASIMD2 intrinsics, 1.7GHz 5
MT8173C (Cortex-A72) A32 4-way 12.8 1 MB 3.23 1.81 clang++ 6.0, ALT = 7, PREFETCH = 2560, ASIMD intrinsics, 2.1GHz 6
MT8173C (Cortex-A72) 4-way 12.8 1 MB 6.82 2.30 clang++ 6.0, ALT = 7, PREFETCH = 2560, ASIMD2 intrinsics, 2.1GHz 4
Marvell A8040 (Cortex-A72) 4-way 12.8 1 MB 6.52 2.91 clang++ 3.5, ALT = 7, PREFETCH = 1536, ASIMD2 intrinsics, 1.3GHz 4
NXP LX2160A (Cortex-A72) 4-way 19.2 1 MB 6.70 4.08 clang++ 6.0, ALT = 7, PREFETCH = 1536, ASIMD2 intrinsics, 2.0GHz 4
AWS Graviton (Cortex-A72) 4-way 19.2 2 MB 6.81 4.12 clang++ 6.0, ALT = 7, PREFETCH = 1024, ASIMD2 intrinsics, 2.28GHz 4 7
Amlogic S922X (Cortex-A53) 2-way 10.56 256 KB 2.65 1.47 clang++ 6.0, ALT = 6, PREFETCH = 2560, ASIMD2 intrinsics, 1.896GHz 5
Amlogic S922X (Cortex-A73) 4-way 10.56 1 MB 5.20 2.21 clang++ 6.0, ALT = 6, PREFETCH = 2048, ASIMD2 intrinsics, 1.8GHz 5
Snapdragon 835 (Cortex-A73) 4-way 14.93 2 MB 5.93 3.07 clang++ 9.0, ALT = 7, PREFETCH = 2048, ASIMD2 intrinsics, 2.55GHz
Snapdragon 835 (Cortex-A73) 4-way 14.93 2 MB 5.43 3.92 clang++ 6.0, ALT = 6, PREFETCH = 2048, ASIMD2 intrinsics, 2.55GHz 5
Snapdragon SQ1 (Cortex-A76) 4-way 34.13 4 MB 2 15.29 6.79 clang++ 9.0, ALT = 7, PREFETCH = 1536, ASIMD2 intrinsics, 3.0GHz
Snapdragon SQ1 (Cortex-A76) 4-way 34.13 4 MB 2 15.27 6.87 clang++-18.0, ALT = 7, PREFETCH = 1536, ASIMD2 intrinsics, 3.0GHz
Snapdragon x1e78100 (Oryon) 4-way 43.6 12 MB 2 30.03 22.12 clang++ 14.0, ALT = 7, PREFETCH = 5120, ASIMD2 intrinsics, 3.37GHz 8
BCM2712 (Cortex-A76) 4-way 17.07 2 MB 15.33 8.26 clang++ 13.0, ALT = 7, PREFETCH = 4096, ASIMD2 intrinsics, 2.4GHz
NVIDIA Orin (Cortex-A78AE) 4-way 23 6 MB 2 15.73 11.19 clang++ 11.0, ALT = 7, PREFETCH = 4096, ASIMD2 intrinsics, 2.2GHz
NVIDIA armv8.2 (Carmel) 4-way 51.2 4 MB 2 13.49 6.90 clang++ 9.0, ALT = 7, PREFETCH = 3584, ASIMD2 intrinsics, 1.91GHz
Fujitsu armv8.2 (A64fx) 16-way 256 8 MB 2 13.86 13.33 g++ 10.2, ALT = 11, PREFETCH = 4096, SVE intrinsics, 2.2GHz 4
Fujitsu armv8.2 (A64fx) 16-way 256 8 MB 2 27.89 23.26 g++ 10.2, ALT = 12, PREFETCH = 4096, SVE intrinsics, 2.2GHz 4
Fujitsu armv8.2 (A64fx) 16-way 256 8 MB 2 13.32 13.46 armclang++ 20.3, ALT = 11, PREFETCH = 3584, SVE intrinsics, 2.2GHz 4
Fujitsu armv8.2 (A64fx) 16-way 256 8 MB 2 28.20 26.28 armclang++ 20.3, ALT = 12, PREFETCH = 4608, SVE intrinsics, 2.2GHz 4
Fujitsu armv8.2 (A64fx) 16-way 256 8 MB 2 39.64 36.17 armclang++ 20.3, ALT = 13, PREFETCH = 3072, SVE intrinsics, 2.2GHz
Apple armv8.4 (Firestorm) 4-way 58 12 MB 2 30.97 22.32 apple clang++ 12.0, ALT = 7, PREFETCH = 3072, ASIMD2 intrinsics, 3.2GHz 8
Baikal-T1 (MIPS P5600) 4-way 6.4 1 MB 3.85 2.00 g++ 7.3, ALT = 8, PREFETCH = 4096, MSA intrinsics, 1.2GHz 9
Baikal-T1 (MIPS P5600) 4-way 6.4 1 MB 3.74 2.09 g++ 7.3, ALT = 8, PREFETCH = 4096, MSA intrinsics, 1.2GHz 9 10

Footnotes

  1. Prefetch applies only to 512x512 and is tuned for the given core clock; 64x64 is not prefetched.

  2. The entirety of 512x512 matrices fit in LLC; LLC runs in the clock domain of the cores on SNB & IVB, but in its own clock domain on HSW. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

  3. Amount of shared L2 in the 'big' cluster.

  4. Non-native compiler tuning -mtune=cortex-a57. 2 3 4 5 6 7 8 9

  5. Small dataset (64x64) uses ALT=7, big dataset (512x512) uses ALT=6. 2 3 4 5

  6. Target arch set to 32-bit A32. 2

  7. Core part of AWS EC2 instance.

  8. Prefetch makes little difference. 2

  9. Large variance in the 512x512 times -- best result listed. 2

  10. Non-native compiler tuning -mtune=mips32r5.

About

Musings in GEMM (General Matrix Multiplication)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published