Write CFFI stuff quickly without runtime overhead.
CFFI is powerful, but using its API to write C-style code can sometimes be cumbersome because it requires you to repeatedly pass in types, unlike the dot operator in C that has some type inference capabilities.
This library provides CFFI with dot operator-like functionality at compile time, allowing you to write CFFI-related code as simple as C with just a small amount of FFI type declarations.
This library has been tested to work on SBCL, CCL, ECL, ABCL, and CLISP,
and theoretically is portable across implementations that provide macroexpand-all
.
Here is a comparison table between C syntax:
C | cffi-ops |
---|---|
x->y.z or x->y->z | (-> x y z) (Note that x , y , and z must be the same symbols used in defcstruct ) |
&x->y | (& (-> x y)) |
*x | ([] x) |
x[n] | ([] x n) |
&x[n] or x + n | (& ([] x n)) |
x.y = z | (setf (-> x y) z) if z is a variable |
(csetf (-> x y) z) if z is a CFFI pointer | |
A _a, *a = &_a | (clet ((a (foreign-alloca '(:struct A)))) ...) |
A *a = malloc(sizeof(A)) | (clet ((a (cffi:foreign-alloc '(:struct A)))) ...) |
A _a = *b, *a = &_a | (clet ((a ([] b))) ...) |
A *a = b | (clet ((a b)) ...) |
Please note that since it is not possible to directly manipulate C compound types in Lisp,
binding and assignment of compound types require the use of clet
(or clet*
) and csetf
,
which bind and operate on variables that are CFFI pointers.
And the symbol ->
is directly exported from the arrow-macros package,
so this library is fully compatible with arrow-macros
,
which means you can freely use all the macros (including ->
) provided by arrow-macros
inside or outside of clocally
, clet
, clet*
, or csetf
.
For the following C code:
#include <stdlib.h>
#include <assert.h>
typedef struct {
float x;
float y;
float z;
} Vector3;
typedef struct {
Vector3 v1;
Vector3 v2;
Vector3 v3;
} Matrix3;
void Vector3Add(Vector3 *output, const Vector3 *v1, const Vector3 *v2) {
output->x = v1->x + v2->x;
output->y = v1->y + v2->y;
output->z = v1->z + v2->z;
}
int main(int argc, char *argv[]) {
Matrix3 m1[3];
m1[0].v1.x = 1.0;
m1[0].v1.y = 2.0;
m1[0].v1.z = 3.0;
Matrix3 m2 = *m1;
Vector3 *v1 = &m2.v1;
Vector3 *v2 = malloc(sizeof(Vector3));
*v2 = *v1;
v2->x = 3.0;
v2->z = 1.0;
Vector3Add(v1, v1, v2);
assert(v1->x == 4.0);
assert(v1->y == 4.0);
assert(v1->z == 4.0);
free(v2);
return 0;
}
The equivalent Lisp code (written using cffi-ops
) is:
(defpackage cffi-ops-example
(:use #:cl #:cffi #:cffi-ops))
(in-package #:cffi-ops-example)
(defcstruct vector3
(x :float)
(y :float)
(z :float))
(defcstruct matrix3
(v1 (:struct vector3))
(v2 (:struct vector3))
(v3 (:struct vector3)))
(defun vector3-add (output v1 v2)
(clocally
(declare (ctype (:pointer (:struct vector3)) output v1 v2))
(setf (-> output x) (+ (-> v1 x) (-> v2 x))
(-> output y) (+ (-> v1 y) (-> v2 y))
(-> output z) (+ (-> v1 z) (-> v2 z)))))
(defun main ()
(clet ((m1 (foreign-alloca '(:array (:struct matrix3) 3))))
(setf (-> ([] m1 0) v1 x) 1.0
(-> ([] m1 0) v1 y) 2.0
(-> ([] m1 0) v1 z) 3.0)
(clet* ((m2 ([] m1))
(v1 (& (-> m2 v1)))
(v2 (foreign-alloc '(:struct vector3))))
(csetf ([] v2) ([] v1))
(setf (-> v2 x) 3.0
(-> v2 z) 1.0)
(vector3-add v1 v1 v2)
(assert (= (-> v1 x) 4.0))
(assert (= (-> v1 y) 4.0))
(assert (= (-> v1 z) 4.0))
(foreign-free v2))))
And the equivalent Lisp code (written without using cffi-ops
) is:
(defpackage cffi-example
(:use #:cl #:cffi))
(in-package #:cffi-example)
(defcstruct vector3
(x :float)
(y :float)
(z :float))
(defcstruct matrix3
(v1 (:struct vector3))
(v2 (:struct vector3))
(v3 (:struct vector3)))
(declaim (inline memcpy))
(defcfun "memcpy" :void
(dest :pointer)
(src :pointer)
(n :size))
(defun vector3-add (output v1 v2)
(with-foreign-slots (((xout x) (yout y) (zout z)) output (:struct vector3))
(with-foreign-slots (((x1 x) (y1 y) (z1 z)) v1 (:struct vector3))
(with-foreign-slots (((x2 x) (y2 y) (z2 z)) v2 (:struct vector3))
(setf xout (+ x1 x2) yout (+ y1 y2) zout (+ z1 z2))))))
(defun main ()
(with-foreign-object (m1 '(:struct matrix3) 3)
(with-foreign-slots ((x y z)
(foreign-slot-pointer
(mem-aptr m1 '(:struct matrix3) 0)
'(:struct matrix3) 'v1)
(:struct vector3))
(setf x 1.0 y 2.0 z 3.0))
(with-foreign-object (m2 '(:struct matrix3))
(memcpy m2 m1 (foreign-type-size '(:struct matrix3)))
(let ((v1 (foreign-slot-pointer m2 '(:struct matrix3) 'v1))
(v2 (foreign-alloc '(:struct vector3))))
(memcpy v2 v1 (foreign-type-size '(:struct vector3)))
(with-foreign-slots ((x z) v2 (:struct vector3))
(setf x 3.0 z 1.0))
(vector3-add v1 v1 v2)
(with-foreign-slots ((x y z) v1 (:struct vector3))
(assert (= x 4.0))
(assert (= y 4.0))
(assert (= z 4.0)))
(foreign-free v2)))))
Both of them should generate almost equivalent machine code in SBCL and have very similar performance.