-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d44bd67
commit 06ed3cb
Showing
6 changed files
with
292 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
|
||
from typing import Union, Callable | ||
|
||
import brainstate as bst | ||
import braintools as bts | ||
import brainunit as u | ||
import dendritex as dx | ||
import jax | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
|
||
bst.environ.set(dt=0.01 * u.ms) | ||
|
||
# Load Input and Output Data | ||
df_inp_traces = pd.read_csv('neuron_data/input_traces_hh.csv') | ||
df_out_traces = pd.read_csv('neuron_data/output_traces_hh.csv') | ||
|
||
area = 20000 * u.um ** 2 # neuronal area | ||
inp_traces = df_inp_traces.to_numpy()[:, 1:] * 1e9 * u.nA # input currents | ||
mem_traces = df_out_traces.to_numpy()[:, 1:] * u.mV # membrane potentials to record | ||
|
||
|
||
class INa(dx.Channel): | ||
root_type = dx.HHTypedNeuron | ||
|
||
def __init__( | ||
self, | ||
size: bst.typing.Size, | ||
ENa: Union[bst.typing.ArrayLike, Callable] = 50. * u.mV, | ||
gNa: Union[bst.typing.ArrayLike, Callable] = 120. * u.mS, | ||
vth: Union[bst.typing.ArrayLike, Callable] = -63 * u.mV, | ||
): | ||
super().__init__(size) | ||
self.ENa = bst.init.param(ENa, self.varshape) | ||
self.gNa = bst.init.param(gNa, self.varshape) | ||
self.V_th = bst.init.param(vth, self.varshape) | ||
|
||
def init_state(self, V, batch_size=None): | ||
self.m = dx.State4Integral(bst.init.param(u.math.zeros, self.varshape)) | ||
self.h = dx.State4Integral(bst.init.param(u.math.zeros, self.varshape)) | ||
|
||
# m channel | ||
m_alpha = lambda self, V: 0.32 * 4 / u.math.exprel((13. * u.mV - V + self.V_th).to_decimal(u.mV) / 4.) | ||
m_beta = lambda self, V: 0.28 * 5 / u.math.exprel((V - self.V_th - 40. * u.mV).to_decimal(u.mV) / 5.) | ||
m_inf = lambda self, V: self.m_alpha(V) / (self.m_alpha(V) + self.m_beta(V)) | ||
|
||
# h channel | ||
h_alpha = lambda self, V: 0.128 * u.math.exprel((17. * u.mV - V + self.V_th).to_decimal(u.mV) / 18.) | ||
h_beta = lambda self, V: 4. / (1 + u.math.exp((40. * u.mV - V + self.V_th).to_decimal(u.mV) / 5.)) | ||
h_inf = lambda self, V: self.h_alpha(V) / (self.h_alpha(V) + self.h_beta(V)) | ||
|
||
def compute_derivative(self, V, *args, **kwargs): | ||
m = self.m.value | ||
h = self.h.value | ||
self.m.derivative = (self.m_alpha(V) * (1 - m) - self.m_beta(V) * m) / u.ms | ||
self.h.derivative = (self.h_alpha(V) * (1 - h) - self.h_beta(V) * h) / u.ms | ||
|
||
def current(self, V, *args, **kwargs): | ||
m = self.m.value | ||
h = self.h.value | ||
return (self.gNa * m * m * m * h) * (self.ENa - V) | ||
|
||
|
||
class IK(dx.Channel): | ||
root_type = dx.HHTypedNeuron | ||
|
||
def __init__( | ||
self, | ||
size: bst.typing.Size, | ||
EK: Union[bst.typing.ArrayLike, Callable] = -90. * u.mV, | ||
gK: Union[bst.typing.ArrayLike, Callable] = 36. * u.mS, | ||
vth: Union[bst.typing.ArrayLike, Callable] = -63 * u.mV, | ||
): | ||
super().__init__(size) | ||
self.EK = bst.init.param(EK, self.varshape) | ||
self.gK = bst.init.param(gK, self.varshape) | ||
self.V_th = bst.init.param(vth, self.varshape) | ||
|
||
def init_state(self, V, batch_size=None): | ||
self.n = dx.State4Integral(bst.init.param(u.math.zeros, self.varshape)) | ||
|
||
# n channel | ||
n_alpha = lambda self, V: 0.032 * 5 / u.math.exprel((15. * u.mV - V + self.V_th).to_decimal(u.mV) / 5.) | ||
n_beta = lambda self, V: .5 * u.math.exp((10. * u.mV - V + self.V_th).to_decimal(u.mV) / 40.) | ||
n_inf = lambda self, V: self.n_alpha(V) / (self.n_alpha(V) + self.n_beta(V)) | ||
|
||
def compute_derivative(self, V, *args, **kwargs): | ||
n = self.n.value | ||
self.n.derivative = (self.n_alpha(V) * (1 - n) - self.n_beta(V) * n) / u.ms | ||
|
||
def current(self, V, *args, **kwargs): | ||
n2 = self.n.value ** 2 | ||
return (self.gK * n2 * n2) * (self.EK - V) | ||
|
||
|
||
class HH(dx.neurons.SingleCompartment): | ||
def __init__( | ||
self, | ||
size, | ||
v_initializer: Callable = bst.init.Uniform(-70 * u.mV, -60. * u.mV), | ||
gL: Union[bst.typing.ArrayLike, Callable] = 0.003 * u.mS, | ||
gNa: Union[bst.typing.ArrayLike, Callable] = 120. * u.mS, | ||
gK: Union[bst.typing.ArrayLike, Callable] = 36. * u.mS, | ||
C: Union[bst.typing.ArrayLike, Callable] = 1. * (u.uF / u.cm ** 2) | ||
): | ||
super().__init__(size, V_initializer=v_initializer, C=C) | ||
self.ina = INa(size, gNa=gNa) | ||
self.ik = IK(size, gK=gK) | ||
self.il = dx.channels.IL(size, g_max=gL, E=-65. * u.mV) | ||
|
||
|
||
def visualize_target(voltages): | ||
fig, gs = bts.visualize.get_figure(2, voltages.shape[1], 3, 4.5) | ||
times = np.arange(voltages.shape[0]) * 0.01 | ||
for i in range(voltages.shape[1]): | ||
ax = fig.add_subplot(gs[0, i]) | ||
ax.plot(times, voltages.mantissa[:, i], label='target') | ||
plt.xlabel('Time [ms]') | ||
plt.legend() | ||
ax = plt.subplot(gs[1, i]) | ||
ax.plot(times, inp_traces[i].mantissa) | ||
plt.xlabel('Time [ms]') | ||
plt.show() | ||
|
||
|
||
def visualize(voltages, gl, g_na, g_kd, C): | ||
# currents: [T, B] | ||
# voltages: [T, B] | ||
simulated_vs = simulate_model(gl, g_na, g_kd, C) | ||
voltages = voltages.mantissa | ||
simulated_vs = simulated_vs.mantissa | ||
|
||
fig, gs = bts.visualize.get_figure(2, simulated_vs.shape[1], 3, 4.5) | ||
for i in range(simulated_vs.shape[1]): | ||
ax = fig.add_subplot(gs[0, i]) | ||
ax.plot(voltages[:, i], label='target') | ||
ax.plot(simulated_vs[:, i], label='simulated') | ||
plt.legend() | ||
ax = plt.subplot(gs[1, i]) | ||
ax.plot(inp_traces[i].mantissa) | ||
plt.show() | ||
|
||
|
||
def simulate_model(gl, g_na, g_kd, C): | ||
current = inp_traces.T | ||
assert current.ndim == 2 # [T, B] | ||
n_input = current.shape[1] | ||
hh = HH((n_input, 1), gL=gl, gNa=g_na, gK=g_kd, C=C, v_initializer=bst.init.Constant(-65. * u.mV), ) | ||
hh.init_state() | ||
|
||
def step_fun(i, inp): | ||
with bst.environ.context(i=i, t=bst.environ.get_dt() * i): | ||
dx.rk4_step(hh, bst.environ.get('t'), inp) | ||
return hh.V.value | ||
|
||
indices = np.arange(current.shape[0]) | ||
current = u.math.expand_dims(current, axis=-1) # [T, B, 1] | ||
return bst.transform.for_loop(step_fun, indices, current) # (T, B) | ||
|
||
|
||
@bst.transform.jit | ||
def compare_potentials(param): | ||
vs = simulate_model(param['gl'], param['g_na'], param['g_kd'], param['C']) # (T, B) | ||
losses = bts.metric.squared_error(vs.mantissa, target_vs.mantissa) | ||
return losses.mean() | ||
|
||
|
||
# inp_traces: [B, T] | ||
# target_vs: [B, T, 1] | ||
# target_vs = simulate_model(50.37195496 * u.nsiemens, | ||
# 28.01317016 * u.usiemens, | ||
# 8.15968937 * u.usiemens, | ||
# 195.2173985 * u.pfarad) | ||
target_vs = u.math.expand_dims(mem_traces.T, axis=-1) # [T, B, 1] | ||
|
||
|
||
# visualize_target(target_vs) | ||
|
||
|
||
def visualize_hh_input_and_output(): | ||
# Load Input and Output Data | ||
inp_traces = df_inp_traces.to_numpy() | ||
inp_traces = inp_traces[:, 1:] * 1e9 | ||
|
||
out_traces = df_out_traces.to_numpy() | ||
out_traces = out_traces[:, 1:] | ||
|
||
indices = np.arange(inp_traces.shape[1]) * 0.01 | ||
|
||
fig, gs = bts.visualize.get_figure(3, 1, 1.2, 6.0) | ||
ax = fig.add_subplot(gs[0, 0]) | ||
ax.plot(indices, inp_traces.T) | ||
plt.xticks([]) | ||
plt.ylabel('Current [nA]', fontsize=13) | ||
|
||
ax2 = fig.add_subplot(gs[1:, 0]) | ||
ax2.plot(indices, out_traces.T) | ||
plt.ylabel('Potential [mV]', fontsize=13) | ||
plt.xlabel('Time [ms]') | ||
|
||
fig.align_ylabels([ax, ax2]) | ||
plt.show() | ||
|
||
|
||
bounds = { | ||
'gl': [1e0, 1e2] * u.nS, | ||
'g_na': [1e1, 2e2] * u.uS, | ||
'g_kd': [1e1, 1e2] * u.uS, | ||
'C': [0.1, 2] * u.uF * u.cm ** -2 * area, | ||
} | ||
|
||
|
||
def fitting_by_others(method='DE', n_sample=200): | ||
print(f"Method: {method}, n_sample: {n_sample}") | ||
|
||
@jax.jit | ||
@jax.vmap | ||
@jax.jit | ||
def loss_with_multiple_run(**params): | ||
return compare_potentials(params) | ||
|
||
opt = bts.optim.NevergradOptimizer( | ||
loss_with_multiple_run, | ||
n_sample=n_sample, | ||
bounds=bounds, | ||
method=method, | ||
) | ||
opt.initialize() | ||
param = opt.minimize(10) | ||
loss = compare_potentials(param) | ||
print(param) | ||
print(loss) | ||
visualize(target_vs, **param) | ||
return param, loss | ||
|
||
|
||
if __name__ == '__main__': | ||
fitting_by_others(n_sample=100) |
Oops, something went wrong.