Pytorch implementation of "Latent Space Policies for Hierarchical Reinforcement Learning"
pip3 install -r requirements.txt
Train agent in "HumanoidBulletEnv" in PyBullet library.
A dedicated configuration file for this environment is in configs directory.
python3 main.py --config configs/config_lsphrl_humanoid.toml --save-dir results/test_humanoid
A model file is saved in results/test_humanoid/checkpoints/model.pth
.
Load this file to run the trained policy.
python3 main.py --config configs/config_lsphrl_humanoid.toml -m results/test_humanoid/checkpoints/model.pth -e -r
Options
--config Config file path
--save-dir Save directory
--visualize-interval Interval to draw graphs of metrics.
--device Device for computation.
-e, --eval Run model evaluation.
-m, --model-filepath Path to trained model for evaluation.
-r, --render Render agent behavior during evaluation.
hoge
foo
HumanoidBulletEnv |
---|
![]() |