Skip to content

Pytorch implementation of "Latent Space Policies for Hierarchical Reinforcement Learning"

Notifications You must be signed in to change notification settings

matthewlujp/LatentSpacePolicies_for_HierarchicalRL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LatentSpacePolicies_for_HierarchicalRL

Pytorch implementation of "Latent Space Policies for Hierarchical Reinforcement Learning"

Install required packages with pip3

pip3 install -r requirements.txt

Try out

Train agent in "HumanoidBulletEnv" in PyBullet library.
A dedicated configuration file for this environment is in configs directory.

python3 main.py --config configs/config_lsphrl_humanoid.toml --save-dir results/test_humanoid

A model file is saved in results/test_humanoid/checkpoints/model.pth. Load this file to run the trained policy.

python3 main.py --config configs/config_lsphrl_humanoid.toml -m results/test_humanoid/checkpoints/model.pth -e -r

Options

--config              Config file path
--save-dir            Save directory
--visualize-interval  Interval to draw graphs of metrics.
--device              Device for computation.
-e, --eval            Run model evaluation.
-m, --model-filepath  Path to trained model for evaluation.
-r, --render          Render agent behavior during evaluation.

Implementation notes

hoge

Evaluations

foo

HumanoidBulletEnv

About

Pytorch implementation of "Latent Space Policies for Hierarchical Reinforcement Learning"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published