Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support fuse add into ConvTranspose. #105

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 16 additions & 4 deletions onnxoptimizer/passes/fuse_add_bias_into_conv.h
Original file line number Diff line number Diff line change
Expand Up @@ -33,10 +33,21 @@ struct FuseAddBiasIntoConv final : public PredicateBasedPass {
std::string getPassName() const override {
return "fuse_add_bias_into_conv";
}

inline bool matchConvAdd(Node *node) {
return node->kind() == kAdd && node->inputs()[0]->node()->kind() == kConv &&
node->inputs()[0]->node()->inputs().size() == 2;
}

inline bool matchConvTransposeAdd(Node *node) {
return node->kind() == kAdd && node->inputs()[0]->node()->kind() == kConvTranspose &&
node->inputs()[0]->node()->inputs().size() == 2;
}

bool patternMatchPredicate(Node *node) override {
return CheckKind(node, kAdd, 0, kConv) &&
GetInputsOfPreNode(node, 0).size() == 2;
return matchConvAdd(node) || matchConvTransposeAdd(node);
}

static Node *makeSqueezeOrUnsqueeze(Graph &graph, std::vector<int64_t> &axes,
Value *input, Node *target_node,
BuiltinSymbol k) {
Expand All @@ -62,6 +73,7 @@ struct FuseAddBiasIntoConv final : public PredicateBasedPass {
NodeDestroyType &destroy_current) override {
// due to current broadcasting's constraint, Conv has to be the first
// operand
const bool is_conv = matchConvAdd(n);
destroy_current = NodeDestroyType::DestroyZero;
auto orig_conv = n->inputs()[0];
auto orig_bias = n->inputs()[1];
Expand All @@ -86,8 +98,8 @@ struct FuseAddBiasIntoConv final : public PredicateBasedPass {
}
// try to get feature M and rank from weight_shape
if (weight_shape.size() > 0 && weight_shape[0].is_int) {
ONNX_ASSERT(M == -1 || M == weight_shape[0].dim);
M = weight_shape[0].dim;
ONNX_ASSERT(M == -1 || M == weight_shape[0].dim || M == weight_shape[1].dim);
M = is_conv ? weight_shape[0].dim : weight_shape[1].dim;
ONNX_ASSERT(rank == -1 ||
rank == static_cast<int64_t>(weight_shape.size()));
rank = weight_shape.size();
Expand Down
202 changes: 202 additions & 0 deletions onnxoptimizer/test/optimizer_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -1424,6 +1424,208 @@ def test_fuse_add_bias_into_conv_squeeze_4d_bias_no_fuse(self):
assert optimized_model.graph.node[0].op_type == "Conv"
assert optimized_model.graph.node[1].op_type == "Add"

def test_fuse_add_bias_into_conv_transpose_with_scalar_bias(self): # type: () -> None
nodes = [
helper.make_node("ConvTranspose", ["X", "Y"], ["Z"], strides=(2, 2)),
helper.make_node("Add", ["Z", "A"], ["B"]),
]
graph = helper.make_graph(
nodes,
"test",
[
helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 3, 160, 160)),
helper.make_tensor_value_info("Y", TensorProto.FLOAT, (3, 16, 2, 2)),
helper.make_tensor_value_info("A", TensorProto.FLOAT, ()),
],
[helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 320, 320))],
)
optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"])

# Unsqueeze, Conv
assert len(optimized_model.graph.node) == 4
assert optimized_model.graph.node[0].op_type == "Unsqueeze"
assert optimized_model.graph.node[1].op_type == "Constant"
assert optimized_model.graph.node[2].op_type == "Tile"
assert optimized_model.graph.node[3].op_type == "ConvTranspose"

def test_fuse_add_bias_into_conv_transpose_use_weight_shape(self): # type: () -> None
nodes = [
helper.make_node("ConvTranspose", ["X", "Y"], ["Z"], strides=(2, 2)),
helper.make_node("Add", ["Z", "A"], ["B"]),
]
# FIXME(daquexian): It looks like subgraph cannot get value info from parent subgraph
# nodes.extend(self._make_fake_loop_op(
# [helper.make_node("Conv", ["_X", "Y"], ["_Z"]),
# helper.make_node("Add", ["_Z", "A"], ["_B2"])],
# [(TensorProto.FLOAT, (1, 5, 3, 3), "X")],
# [(TensorProto.FLOAT, (1, 16, 1, 1), "B2")]))
graph = helper.make_graph(
nodes,
"test",
[
helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 3, 160, 160)),
helper.make_tensor_value_info("Y", TensorProto.FLOAT, (3, 16, 2, 2)),
helper.make_tensor_value_info("A", TensorProto.FLOAT, (16, 1, 1)),
],
[helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 320, 320))],
)
optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"])

# # Squeeze, Conv, Constant (trip count), Constant (condition), Loop
# assert len(list(optimized_model.graph.node)) == 5
assert len(list(optimized_model.graph.node)) == 2
assert optimized_model.graph.node[0].op_type == "Squeeze"
assert optimized_model.graph.node[1].op_type == "ConvTranspose"
assert optimized_model.graph.output[0].name == "B"
# # Squeeze, Conv
# assert len(optimized_model.graph.node[4].attribute[0].g.node) == 2
# assert optimized_model.graph.node[4].attribute[0].g.node[0].op_type == 'Squeeze'
# assert optimized_model.graph.node[4].attribute[0].g.node[1].op_type == 'Conv'
# # Output 1 since 0 is 'cond'
# assert optimized_model.graph.node[4].attribute[0].g.output[1].name == 'B2'

# type: () -> None
def test_fuse_add_bias_into_conv_transpose_use_weight_shape_with_tile(self):
conv = helper.make_node("ConvTranspose", ["X", "Y"], ["Z"], strides=(2, 2))
add = helper.make_node("Add", ["Z", "A"], ["B"])
graph = helper.make_graph(
[conv, add],
"test",
[
helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 3, 160, 160)),
helper.make_tensor_value_info("Y", TensorProto.FLOAT, (3, 16, 2, 2)),
helper.make_tensor_value_info("A", TensorProto.FLOAT, (1,)),
],
[helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 320, 320))],
)
optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"])

assert len(list(optimized_model.graph.node)) == 3
assert len(optimized_model.graph.value_info) == 1
assert (
optimized_model.graph.value_info[0].type.tensor_type.elem_type
== TensorProto.INT64
)
assert len(optimized_model.graph.value_info[0].type.tensor_type.shape.dim) == 1
assert optimized_model.graph.node[0].op_type == "Constant"
assert optimized_model.graph.node[1].op_type == "Tile"
assert optimized_model.graph.node[2].op_type == "ConvTranspose"
assert optimized_model.graph.output[0].name == "B"

def test_fuse_add_bias_into_conv_transpose_use_conv_shape(self): # type: () -> None
sub = helper.make_node("Sub", ["M", "N"], ["Y"])
conv = helper.make_node("ConvTranspose", ["X", "Y"], ["Z"], strides=(2, 2))
add = helper.make_node("Add", ["Z", "A"], ["B"])
graph = helper.make_graph(
[sub, conv, add],
"test",
[
helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 3, 160, 160)),
helper.make_tensor_value_info("M", TensorProto.FLOAT, (3, 16, 2, 2)),
helper.make_tensor_value_info("N", TensorProto.FLOAT, (3, 16, 2, 2)),
helper.make_tensor_value_info("A", TensorProto.FLOAT, (1, 16, 1, 1)),
],
[helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 320, 320))],
value_info=[
helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 320, 320))
],
)
optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"])

assert len(optimized_model.graph.node) == 3
assert optimized_model.graph.node[0].op_type == "Sub"
assert optimized_model.graph.node[1].op_type == "Squeeze"
assert optimized_model.graph.node[2].op_type == "ConvTranspose"
assert optimized_model.graph.output[0].name == "B"
assert (
optimized_model.graph.output[0].type.tensor_type.elem_type
== TensorProto.FLOAT
)
assert len(optimized_model.graph.output[0].type.tensor_type.shape.dim) == 4

# type: () -> None
def test_fuse_add_bias_into_conv_transpose_use_move_constant(self):
conv = helper.make_node("ConvTranspose", ["X", "Y"], ["Z"], strides=(2, 2))
constant = helper.make_node(
"Constant",
[],
["A"],
value=helper.make_tensor(
name="bias",
data_type=TensorProto.FLOAT,
dims=(16, 1, 1),
vals=np.random.randn(16).astype(np.float32).tolist(),
),
)
add = helper.make_node("Add", ["Z", "A"], ["B"])
graph = helper.make_graph(
[conv, constant, add],
"test",
[
helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 3, 160, 160)),
helper.make_tensor_value_info("Y", TensorProto.FLOAT, (3, 16, 2, 2)),
],
[helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 320, 320))],
value_info=[
helper.make_tensor_value_info("A", TensorProto.FLOAT, (16, 1, 1)),
],
)
optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"])

assert len(optimized_model.graph.node) == 3
assert optimized_model.graph.node[0].op_type == "Constant"
assert optimized_model.graph.node[1].op_type == "Squeeze"
assert optimized_model.graph.node[2].op_type == "ConvTranspose"
assert optimized_model.graph.output[0].name == "B"
assert (
optimized_model.graph.output[0].type.tensor_type.elem_type
== TensorProto.FLOAT
)
assert len(optimized_model.graph.output[0].type.tensor_type.shape.dim) == 4

# type: () -> None
def test_fuse_add_bias_into_conv_transpose_squeeze_1d_bias_no_fuse(self):
conv = helper.make_node("ConvTranspose", ["X", "Y"], ["Z"], strides=(2, 2))
add = helper.make_node("Add", ["Z", "A"], ["B"])
graph = helper.make_graph(
[conv, add],
"test",
[
helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 3, 160, 160)),
helper.make_tensor_value_info("Y", TensorProto.FLOAT, (3, 16, 2, 2)),
helper.make_tensor_value_info("A", TensorProto.FLOAT, (320,)),
],
[helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 320, 320))],
value_info=[
helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 320, 320)),
],
)
optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"])

assert len(list(optimized_model.graph.node)) == 2
assert optimized_model.graph.node[0].op_type == "ConvTranspose"
assert optimized_model.graph.node[1].op_type == "Add"

# type: () -> None
def test_fuse_add_bias_into_conv_transpose_squeeze_4d_bias_no_fuse(self):
conv = helper.make_node("ConvTranspose", ["X", "Y"], ["Z"], strides=(2, 2))
add = helper.make_node("Add", ["Z", "A"], ["B"])
graph = helper.make_graph(
[conv, add],
"test",
[
helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 3, 160, 160)),
helper.make_tensor_value_info("Y", TensorProto.FLOAT, (3, 16, 2, 2)),
helper.make_tensor_value_info("A", TensorProto.FLOAT, (1, 16, 320, 320)),
],
[helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 320, 320))],
)
optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"])

assert len(list(optimized_model.graph.node)) == 2
assert optimized_model.graph.node[0].op_type == "ConvTranspose"
assert optimized_model.graph.node[1].op_type == "Add"

def test_fuse_matmul_add_bias_into_gemm(self): # type: () -> None
matmul = helper.make_node("MatMul", ["X", "Y"], ["Z"])
add = helper.make_node("Add", ["Z", "B"], ["A"])
Expand Down