Skip to content
/ GENE Public

GENE: Global Event Network Embedding (TextGraphs 2021 Workshop at NAACL 2021)

Notifications You must be signed in to change notification settings

pkuzengqi/GENE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GENE

Code for TextGraphs 2021 paper "GENE: Global Event Network Embedding"

@inproceedings{zeng-etal-2021-gene,
    title = "GENE: Global Event Network Embedding",
    author = "Zeng, Qi  and
      Li, Manling  and
      Lai, Tuan  and
      Ji, Heng  and
      Bansal, Mohit  and
      Tong, Hanghang",
    booktitle = "Proceedings of the Graph-based Methods for Natural Language Processing (TextGraphs)",
    month = Jun,
    year = "2021",
    address = "Mexico City, Mexico",
    publisher = "Association for Computational Linguistics",
}

Requirements

numpy
torch
dgl
sklearn
allennlp

Data

The current data directory only includes the sample data. ACE05 Datset requires LDC License (Access from LDC and preprocessing following OneIE.

You may contact [email protected] for the preprocessed (enhanced) data.

Train

CUDA_VISIBLE_DEVICES=0 python main.py --mode 'train' --version 'test' --model_base 'SEM_ARC' 
  • mode: train, infer, eval
  • model_base: SEM_ARC, SEM, ARC, SKG, DGI
  • version: name for this model

Check args.py for more tunable hyperparameters.

Eval

The evaluation code of Event Coreference can be found in event-coref folder with a separate README.

The evaluation for Node Typing and Argument Role Classification can be run with:

CUDA_VISIBLE_DEVICES=0 python main_hetero.py --mode 'eval' --version 'test' --load_emb 'SEM_ARC.test'
  • load_emb: [MODELBASE].[VERSION]

About

GENE: Global Event Network Embedding (TextGraphs 2021 Workshop at NAACL 2021)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published