-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtester_v3.py
32 lines (23 loc) · 911 Bytes
/
tester_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import f1_score
# Load data
data = pd.read_csv("founders.csv")
# Split data into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
# Create TF-IDF vectorizer
vectorizer = TfidfVectorizer()
# Vectorize training data
tfidf_train = vectorizer.fit_transform(train_data['skills_experiences'])
# Train logistic regression model
model = LogisticRegression()
model.fit(tfidf_train, train_data['label'])
# Vectorize test data
tfidf_test = vectorizer.transform(test_data['skills_experiences'])
# Predict test data
y_pred = model.predict(tfidf_test)
# Calculate F1-score
f1 = f1_score(test_data['label'], y_pred, average='weighted')
print(f"F1-score: {f1}")