Skip to content

punchagan/expense-tracker

Repository files navigation

Expense Tracker

A collection of scrapers, parsers and a GUI to collect, annotate and visualize personal expenses.

It is a collection of scripts to scrape and parse transaction data from bank/credit-card statements and dump them into a local SQLite DB. There's a simple UI that interacts with this local DB that lets the user explore and analyse their spending patterns.

⚠️ NOTE: This is alpha software. Use at your own risk!

Screenshots

Latest Screenshot

Why build one yourself?

We use a lot of Internet Banking these days, but I still don't feel comfortable sharing information about all my expenses with a 3rd-party. So, I built a tool that runs locally on my computer and can only be accessed locally.

How do I use it?

The repository currently contains:

  • Data Scrapers

    • Axis Bank
  • Data Parsers

    • SBI (downloaded tsv/xls)
    • Axis Bank (scraped/downloaded data)
    • Manual entries (Cash)

But, other scrapers/parsers could be easily written.

Parsing transactional SMS messages

Another commonly used approach for tools like this is to parse SMS's sent by banks to get information about expenses. I considered this approach initially, but it turned out that that SMS's sent by my bank don't have enough information all the time.

If you'd like to use this approach, you could setup a program like Macro Droid or Tasker to update a text file on your phone, each time a new (transactional) SMS arrives. You could then write a parser for this SMS messages file.

Or use something like the Android Incoming SMS Gateway Webhook that sends each text message to a Webhook as it arrives. You could write a webhook that captures the SMS text, parses it and writes it to the DB.

Cash transactions

You could use a simple Google Form to track Cash expenses that are not captured digitally. You can make a copy of this Sample form from File > Make a copy and then use the copied form (Tools > Manage Form > Go to live form) to fill in your data. You can set the GSHEET_ID environment variable to the ID of the spreadsheet after setting the permissions to make the sheet viewable by anyone with the link. The script gdrive-csv.py can then be used to fetch this data as a CSV.

User defined Categories & Tags

The app itself provides a small list of categories and allows users to define their own list of categories. New categories can be added to the list of EXTRA_CATEGORIES list in conf.py placed at the root of the project. You can copy sample/conf.py as conf.py and edit it.

The app doesn't provide a list of categories, but allows users to add their own tags by defining the list TAGS in the conf.py file.

Installation

  • If you use poetry, you could just run poetry install.

  • If you prefer pip, you could run pip install -r requirements.txt inside a virtualenv.

Running the code

  • To setup the DB correctly, run alembic upgrade head.

  • The axis-scraper.py uses seleniumbase plugin for pytest to scrape the data. This lets us configure re-runs when the scraping sometimes fails due to network errors, etc. It also lets us run the Credit card transactions scraper in parallel with the account transactions scraper.

    To run the scraper:

    pytest -sv ./scripts/axis-scraper.py --browser=firefox --workers=2 --reruns=5 --reruns-delay=20 --archive-downloads
  • Once the data has been downloaded, the parse-data.py can be used to parse it and save it into the DB.

    python ./scripts/parse-data.py ./downloaded_files/xxx.csv --csv-type axis
  • To visualize the data in the DB, you can run the streamlit app:

    streamlit run app/app.py

Look at the scripts update.sh and run-sample.sh for examples of how to run the scripts described above.

Sample data and UI

  • The repo contains some sample data for writing the parsers, tests and testing out the UI.

  • Once the dependencies have been installed you can simply run the scripts/run-sample.sh script to see the sample data visualized.

Features

Visualization/analysis features

  • Filter expenses by:

    • time duration (month, year or complete duration)
    • categories, tags and counterparty name
    • transaction amount
  • View barcharts of expenses by:

    • day of month
    • day of week
    • category
    • tag

Data entry features

  • Mark transactions as ignored transactions

  • Assign a category for transactions

    • Similar transactions with the same counterparty are categoriesed under the same category automatically
  • Assign one or more tags to transactions

  • Add/Edit remarks

  • Edit merchant (counterparty) names from the UI, since data from Banks usually truncates names.

    • Similar names from the same data source are automatically updated, when the name ends with double asterisks **. If name doesn't end with **, only that transaction is updated.
  • Mark transactions as children of another transaction. Useful when splitting a bill after it's been paid, etc.

  • Newly "scraped" entries are highlighted as to-be-reviewed in the UI. Entries need to be manually marked as reviewed as scrapers could just be automated jobs, for instance.