SlowTorch is another personal pet-project of mine where I tried and implemented the basic and bare-bones functionality of PyTorch just using pure Python, similar to what I did with xsNumPy. This project is also a testament to the richness of PyTorch's Tensor-oriented design. By reimplementing its core features in a self-contained and minimalistic fashion, this project aims to:
- Provide an educational tool for those seeking to understand tensor and automatic gradient (backpropagation) mechanics.
- Encourage developers to explore the intricacies of multidimensional array computation.
This project acknowledges the incredible contributions of the PyTorch team and community over decades of development. While this module reimagines PyTorch's functionality, it owes its design, inspiration, and motivation to the pioneering work of the core PyTorch developers. If that's obvious, this module is not a replacement for PyTorch by any stretch but an homage to its brilliance and an opportunity to explore its concepts from the ground up.
SlowTorch is a lightweight, pure-Python library inspired by PyTorch, designed to mimic essential tensor operations and auto-differentiation (backpropagation) features. This project is ideal for learning and experimentation with multidimensional tensor processing.
Install the latest version of SlowTorch using pip:
pip install -U git+https://github.com/xames3/slowtorch.git#egg=slowtorch
As of now, SlowTorch offers the following features:
- slowtorch.Tensor. The central data structure representing N-dimensional
tensors with support for:
- Arbitrary shapes and data types.
- Broadcasting** for compatible operations (limited).
- Arithmetic and comparison operations.
>>> import slowtorch
>>>
>>> a = slowtorch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
>>> b = slowtorch.tensor([[4, 1, 5, 3, 2], [1, 3, 5, 7, 2]])
>>>
>>> a + b
tensor([[ 5, 3, 8, 7, 7],
[ 7, 10, 13, 16, 12]])
>>> a - b
tensor([[-3, 1, -2, 1, 3],
[ 5, 4, 3, 2, 8]])
>>> a * b
tensor([[ 4, 2, 15, 12, 10],
[ 6, 21, 40, 63, 20]])
>>> a / b
tensor([[ 0.25, 2., 0.6, 1.3333, 2.5],
[ 6., 2.3333, 1.6, 1.2857, 5.]])
>>> a // b
tensor([[ 0., 2., 0., 1., 2.],
[ 6., 2., 1., 1., 5.]])
>>> a % b
tensor([[1, 0, 3, 1, 1],
[0, 1, 3, 2, 0]])
>>> a ** b
tensor([[ 1, 2, 243, 64, 25],
[ 6, 343, 32768, 4782969, 100]])
>>> a < b
tensor([[ True, False, True, False, False],
[False, False, False, False, False]])
>>> a >= b
tensor([[False, True, False, True, True],
[ True, True, True, True, True]])
- slowtorch.tensor. Create an N-dimensional tensor.
>>> slowtorch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
tensor([[0.1, 1.2],
[2.2, 3.1],
[4.9, 5.2]])
>>> slowtorch.tensor([[1, 3], [2, 3]])
tensor([[1, 3],
[2, 3]])
>>> slowtorch.tensor([[1, 2, 3]], dtype=slowtorch.bool)
tensor([[True, True, True]])
- slowtorch.empty. Create an uninitialized tensor of the given shape.
>>> slowtorch.empty(2, 3)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.]])
>>> slowtorch.empty(3, 3, dtype=slowtorch.int64)
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
- slowtorch.zeros. Create a tensor filled with zeros.
>>> slowtorch.zeros(2, 3)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.]])
>>> slowtorch.zeros(2)
tensor([ 0., 0.])
- slowtorch.ones. Create a tensor filled with ones.
>>> slowtorch.ones(2, 3)
tensor([[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> slowtorch.ones(5)
tensor([ 1., 1., 1., 1., 1.])
- slowtorch.full. Create a tensor filled with fill_value.
>>> slowtorch.full(2, 3, fill_value=3.141592)
tensor([[3.1416, 3.1416, 3.1416],
[3.1416, 3.1416, 3.1416]])
- slowtorch.arange. Generate evenly spaced values within a given range.
>>> slowtorch.arange(5)
tensor([0, 1, 2, 3, 4])
>>> slowtorch.arange(1, 4)
tensor([1, 2, 3])
>>> slowtorch.arange(1, 2.5, 0.5)
tensor([ 1., 1.5, 2.])
- Tensor.device. Device where the tensor is.
>>> a = slowtorch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
>>> a.device
device(type='cpu', index=0)
- Tensor.grad. This attribute is None by default and becomes a Tensor the first time a call to backward() computes gradients for self.
- Tensor.ndim. Returns the number of dimensions of self tensor. Alias for Tensor.dim().
>>> a = slowtorch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
>>> a.ndim
2
>>> b = slowtorch.zeros(2, 3, 4)
>>> b.ndim
3
- Tensor.nbytes. Total bytes consumed by the elements of the tensor.
>>> a = slowtorch.zeros(3, 2, dtype=slowtorch.float64)
>>> a
tensor([[ 0., 0.],
[ 0., 0.],
[ 0., 0.]])
>>> a.nbytes
48
>>> b = slowtorch.zeros(1, 3, dtype=slowtorch.int64)
>>> b
tensor([[0, 0, 0]])
>>> b.nbytes
24
- Tensor.itemsize. Length of one tensor element in bytes. Alias for Tensor.element_size().
>>> a = slowtorch.full(2, 3, fill_value=2.71253)
>>> a
tensor([[2.71253, 2.71253, 2.71253],
[2.71253, 2.71253, 2.71253]])
>>> a.itemsize
8
>>> b = slowtorch.tensor([1, 2, 3], dtype=slowtorch.int16)
>>> b.itemsize
2
- Tensor.shape. Size of the tensor as a tuple.
>>> a = slowtorch.zeros(1, 3, dtype=slowtorch.int64)
>>> a
tensor([[0, 0, 0]])
>>> a.shape
(1, 3)
>>> b = slowtorch.zeros(3, 5, 2, dtype=slowtorch.float64)
>>> b.shape
(3, 5, 2)
>>> b.shape = (3, 10)
>>> b
tensor([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
- Tensor.data. Python buffer object pointing to the start of the tensor's data.
>>> a = slowtorch.ones(2, 7)
>>> a.data
tensor([[ 1., 1., 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1., 1., 1.]])
- Tensor.dtype. Data-type of the tensor's elements.
>>> a = slowtorch.ones(2, 7)
>>> a.dtype
slowtorch.float64
>>> b = slowtorch.zeros(3, 5, 2, dtype=slowtorch.int16)
>>> b.dtype
slowtorch.int16
>>> type(b.dtype)
<class 'slowtorch.dtype'>
- Tensor.is_cuda. Is True if the Tensor is stored on the GPU, False otherwise.
>>> a = slowtorch.tensor((1, 2, 3, 4, 5))
>>> a.is_cuda
False
- Tensor.is_quantized. Is True if the Tensor is quantized, False otherwise.
>>> a = slowtorch.tensor((1, 2, 3))
>>> a.is_quantized
False
- Tensor.is_meta. Is True if the Tensor is a meta tensor, False otherwise.
>>> a = slowtorch.zeros(1, 2, 3)
>>> a.is_meta
False
- Tensor.T. View of the transposed array.
>>> a = slowtorch.tensor([[1, 2], [3, 4]])
>>> a
tensor([[1, 2],
[3, 4]])
>>> a.T
tensor([[1, 3],
[2, 4]])
- Tensor.to(). Copies a tensor to a specified data type. Alias for Tensor.type()
>>> a = slowtorch.tensor((1, 2, 3, 4, 5))
>>> a
tensor([1, 2, 3, 4, 5])
>>> a.to(slowtorch.float64)
tensor([ 1., 2., 3., 4., 5.])
>>> a.type(slowtorch.bool)
tensor([True, True, True, True, True])
- Tensor.size(). Number of elements in the tensor.
>>> a = slowtorch.tensor((1, 2, 3, 4, 5))
>>> a.size()
slowtorch.Size([5])
>>> b = slowtorch.ones(2, 3)
>>> b
tensor([[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> b.size()
slowtorch.Size([2, 3])
- Tensor.stride(). Tuple of bytes to step in each dimension when traversing a tensor.
>>> a = slowtorch.ones(2, 3)
>>> a.stride()
(3, 1)
- Tensor.nelement(). Return total number of elements in a tensor. Alias for Tensor.numel().
>>> a = slowtorch.ones(2, 3)
>>> a
tensor([[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> a.nelement()
6
>>> b = slowtorch.tensor((1, 2, 3, 4, 5))
>>> b.numel()
5
- Tensor.clone(). Return a deep copy of the tensor.
>>> a = slowtorch.tensor((1, 2, 3, 4, 5))
>>> b = a.clone()
>>> b
tensor([1, 2, 3, 4, 5])
- Tensor.fill_(). Fill the tensor with a scalar value.
>>> a = slowtorch.tensor([1, 2])
>>> a.fill_(0)
>>> a
tensor([0, 0])
- Tensor.flatten(). Return a copy of the tensor collapsed into one dimension.
>>> a = slowtorch.tensor([[1, 2], [3, 4]])
>>> a.flatten()
tensor([1, 2, 3, 4])
- Tensor.item(). Copy an element of a tensor to a standard Python scalar and return it.
>>> a = slowtorch.tensor((2,))
>>> a
tensor([2])
>>> a.item()
2
- Tensor.view(). Gives a new shape to a tensor without changing its data.
>>> a = slowtorch.arange(6).reshape((3, 2))
>>> a
tensor([[0, 1],
[2, 3],
[4, 5]])
>>> a = slowtorch.tensor([[1, 2, 3], [4, 5, 6]])
>>> a.reshape((6,))
tensor([1, 2, 3, 4, 5, 6])
- Tensor.transpose(). Returns a tensor with dimensions transposed.
>>> a = slowtorch.tensor([[1, 2], [3, 4]])
>>> a
tensor([[1, 2],
[3, 4]])
>>> a.transpose()
tensor([[1, 3],
[2, 4]])
>>> a = slowtorch.tensor([1, 2, 3, 4])
>>> a.transpose()
tensor([1, 2, 3, 4])
>>> a = slowtorch.ones((1, 2, 3))
>>> a.transpose((1, 0, 2)).shape
(2, 1, 3)
- slowtorch.e. Euler's constant.
>>> slowtorch.e
2.718281828459045
- slowtorch.inf. IEEE 754 floating point representation of (positive) infinity.
>>> slowtorch.inf
inf
- slowtorch.nan. IEEE 754 floating point representation of Not a Number (NaN).
>>> slowtorch.nan
nan
- slowtorch.newaxis. A convenient alias for None, useful for indexing tensors.
>>> slowtorch.newaxis is None
True
- slowtorch.pi. Pi...
>>> slowtorch.pi
3.141592653589793
The codebase is structured to be intuitive and mirrors the design principles of PyTorch to a significant extent. Comprehensive docstrings are provided for each module and function, ensuring clarity and ease of understanding. Users are encouraged to delve into the code, experiment with it, and modify it to suit their learning curve.
Since, the implementation doesn't rely on any external packages, it will work
with any CPython build v3.10 and higher. Technically, it should work on 3.9 and
below as well but due to some syntactical and type-aliasing changes, it will
not support it directly. For instance, the typing module was significantly
changed in 3.10, hence some features like types.GenericAlias
and using
native types like tuple
, list
, etc. will not work. If you choose to
remove all the typing stuff, the code will work just fine, at least that's what
I hope.
Note. SlowTorch cannot and should not be used as an alternative to PyTorch.
Contributions to this project are warmly welcomed. Whether it's refining the code, enhancing the documentation, or extending the current feature set, your input is highly valued. Feedback, whether constructive criticism or commendation, is equally appreciated and will be instrumental in the evolution of this educational tool.
This project is inspired by the remarkable work done by the PyTorch Development Team. It is a tribute to their contributions to the field of machine learning and the open-source community at large.
SlowTorch is licensed under the MIT License. See the LICENSE file for more details.